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Abstract 

Emerging from the convergence of digital twin technology and the metaverse, consumer health (MCH) is witness-
ing a transformative shift. The amalgamation of bioinformatics with healthcare Big Data has ushered in a new era 
of disease prediction models that harness comprehensive medical data, enabling the anticipation of illnesses even 
before the onset of symptoms. In this model, deep neural networks stand out because they improve accuracy 
remarkably by increasing network depth and making weight changes using gradient descent. Nonetheless, tradi-
tional methods face their own set of challenges, including the issues of gradient instability and slow training. In this 
case, the Broad Learning System (BLS) stands out as a good alternative. It gets around the problems with gradient 
descent and lets you quickly rebuild a model through incremental learning. One problem with BLS is that it has trou-
ble extracting complex features from complex medical data. This makes it less useful in a wide range of healthcare 
situations. In response to these challenges, we introduce DAE-BLS, a novel hybrid model that marries Denoising 
AutoEncoder (DAE) noise reduction with the efficiency of BLS. This hybrid approach excels in robust feature extrac-
tion, particularly within the intricate and multifaceted world of medical data. Validation using diverse datasets yields 
impressive results, with accuracies reaching as high as 98.50%. DAE-BLS’s ability to rapidly adapt through incremental 
learning holds great promise for accurate and agile disease prediction, especially within the complex and dynamic 
healthcare scenarios of today.
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Introduction
In current era, society is experiencing a significant 
demographic shift toward an ageing population. Pro-
jections indicate that by 2050, the number of indi-
viduals over 60 will surpass 300 million [1]. A gradual 
increase in the prevalence of chronic diseases accom-
panies this ageing trend. The custom of planned hos-
pital visits for re-examinations and treatments falls 
short when it comes to the long-term observation and 
treatment that the elderly and people with chronic dis-
eases frequently require, which has a negative impact 
on patient well-being and mental health. Better patient 
outcomes now depend heavily on early disease predic-
tion, and the concept of a digital twin offers a fresh 
perspective on this. In recent years, with the rapid 
development of Internet of Things technology, related 
applications have also appeared in the healthcare field, 
such as patient identity recognition, disease diagnosis, 
cloud data storage [2, 3], physiological signal detec-
tion [4, 5], etc. Setting up a remote community hospi-
tal that uses digital twin and metaverse technologies 
to improve these applications [6] can connect medical 
resources in the same area, creating a comprehensive 
pool of medical resources that eases the burden of not 
having enough medical resources. By linking related 
medical resources, a comprehensive pool of resources 
is created, which lessens the burden of insufficient 
medical resources. Tele Community Hospital uses digi-
tal twin technologies to assist patients in the grassroots 
community in resolving issues. The hospital is cantered 
around a team of experts and uses electronic medical 
data shared by various treatment points in the com-
munity. This model greatly strengthens the connection 
between community members and community hos-
pitals, breaking the previous restrictions on the time 
and place of seeing a doctor. How to use medical data 
in community hospitals, enhanced by digital twin solu-
tions, for fast and accurate disease prediction is a prob-
lem that needs to be solved.

Today, deep neural networks form the basis of most 
algorithm models used for disease prediction, and 
incorporating digital twin technology into this land-
scape promises transformative potential. This study 
[7] employed deep learning, bolstered by digital twin 
insights, to forecast retinal markers of cardiovascular 
disease. In order to detect myocardial infarction auto-
matically, researchers [8], leveraging digital twin simu-
lations, created a convolutional neural network. Using 
more straightforward automated screenings of MB-cre-
atine kinase mass that employ monoclonal antibodies, 
physicians can identify myocardial infarction as early as 
two hours following coronary blockage. Myoglobin and 
troponin are two more potential indicators of cardiac 

necrosis. Healthfog is a system introduced in this paper 
[9], utilizing deep neural networks and digital twin con-
cepts to detect cardiovascular illness.

Yet another difficulty with deep neural networks, as 
well as digital twin integration, is something known as 
“catastrophic forgetting” [10], which describes the fact 
that once certain parameters, such as the number of hid-
den layers, the number of neurons, the number of times, 
and the learning rate, have been confirmed when defining 
the structure of the neural network and its digital twin 
counterpart, they cannot be changed unless the network 
and digital twin system are reset. Every time new detec-
tion data is acquired, all of the data must be retrained, 
which is why it is critical to construct the network model 
and its digital twin framework in advance to ensure 
smooth integration and adaptation. Due to the short-
comings of existing deep learning techniques, a ground-
breaking remedy known as the Broad Learning System 
(BLS) was created. When combined with digital twin 
technology, BLS expands the possibilities for innovation 
and disease prediction. Literature [11] has introduced the 
BLS model, renowned for its straightforward design and 
rapid processing capabilities. In this era of digital twins, 
BLS’s potential is magnified, allowing for versatile appli-
cations in healthcare [12].

The structural disparities between a BLS and a deep 
neural network become even more profound when exam-
ined in the context of time series forecasting and digital 
twin-enabled simulations [13]. BLS exhibits a preference 
for building networks in the direction of “width” rather 
than “depth,” a strategic choice that aligns with the prin-
ciples of digital twin systems. The absence of hidden lay-
ers results in swift training times, eliminating the need 
for gradient descent in weight updates. Gradient instabil-
ity and sluggish training are two problems that traditional 
approaches have to deal with. The Broad Learning Sys-
tem (BLS) sticks out as a good substitute in this situation. 
By using incremental learning, it circumvents the issues 
with gradient descent and enables rapid model recon-
struction. BLS struggles to extract complicated features 
from complex medical data, which is one of its issues. 
Furthermore, the dynamic network topology of BLS, 
coupled with digital twin simulations, allows the model 
to evolve over time, enhancing its adaptability. It’s in this 
synergy of BLS and digital twin technology that incre-
mental learning approaches [11], guided by principles of 
digital twin modeling [14], shine. This approach dictates 
that only the portions of the knowledge base that have 
changed due to new data need to be updated, eliminat-
ing the need to recreate the entire model each time new 
information surfaces.

However, a challenge arises when considering the 
integration of BLS and digital twin frameworks. In the 
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original BLS model, the weights of the input and map-
ping layers are generated randomly, which, in the context 
of digital twin systems, necessitates a more purposeful 
approach to model initialization [15]. As it stands, this 
configuration isn’t an ideal match for the prediction of 
today’s complex, high-dimensional medical datasets in 
conjunction with digital twin data environments. Cre-
ating a predictive model that accommodates both the 
intricacies of complex medical data and digital twin sim-
ulations requires a novel strategy.

It takes a creative approach to build a predictive model 
that can handle the complexities of digital twin simula-
tions and sophisticated medical data. The authors of this 
work suggest a novel approach to address this problem: 
an incremental prediction model based on width learn-
ing and denoising autoencoders (DAE-BLS). With digi-
tal twin technology serving as the backdrop, this hybrid 
approach overcomes the hurdles of extended train-
ing times and the complexities of model updates while 
enhancing adaptability to the dynamic and intricate data 
environments. The digital equivalent of a physical item 
or gadget is called a digital twin. An IoT application can 
be successfully deployed and used with the aid of a digi-
tal twin. Another name for a digital twin is a twin or a 
shadow.

The DAE-BLS model, in conjunction with digital twin 
technology, offers rapid real-time performance, combin-
ing the benefits of incremental learning and the feature 
extraction capabilities of denoising autoencoders, which 
are particularly well-suited for the turbulent digital twin 
landscapes. This synergy not only ensures the accurate 
and agile prediction of diseases but also bridges the gap 
between digital twin technology and advanced healthcare 
solutions, pushing the boundaries of what is possible in 
this digital age.

Related work
Disease prediction refers to the use of collected medi-
cal data, such as the patient’s social and economic sta-
tus, clinical information, and physiological signals, to 
construct an algorithm model to determine whether the 
patient will develop a disease in the future. Disease pre-
diction is the process of building an algorithm model to 
predict a patient’s likelihood of contracting an illness in 
the future using data that has been gathered from medi-
cal records, including the patient’s social and economic 
position, clinical information, and physiological signals. 
However, how to extract robust characteristics from cha-
otic and complex data is a challenge because of the intri-
cacy of the medical data itself. Many researchers have 
considered using unsupervised algorithms for feature 
extraction. In this respect, autoencoders are Very exten-
sive research has been done.

This study [16] proposed a denoising autoencoder 
(DAE) with the belief that a decent feature extrac-
tion should be able to capture the stable structure of 
the input signal and have some robustness. The main 
way that DAE differs from a traditional autoencoder is 
that it adds noise to the input and then uses the dam-
aged, noise-filled version of the sample to recreate the 
original, noise-free input. DAE’s learned features so 
gain from this training approach as well. Replicating 
the characteristics of the original input data accurately 
makes it useful in  situations when the data is unpre-
dictable. As a result, DAE’s learnt features benefit from 
this method of training as well. Useful in contexts with 
erratic data, as it faithfully reproduces the features of 
the original input data. The next step in disease predic-
tion after feature extraction is to develop an appropriate 
algorithm model. When a hereditary illness is passed 
down from one generation to the next, its signs and 
symptoms often worsen and manifest earlier in life. We 
refer to this phenomenon as anticipation. Neural net-
work model with bidirectional recurrent architecture 
for illness risk prediction. They selected three chronic 
diseases with high incidence rates for the purpose of 
predicting each person’s risk for each disease. Methods 
for disease prediction and evaluation using deep neural 
networks have been proposed in the medical profes-
sion, however there are still many obstacles to overcome 
because of the complexity of medical data.

Autoencoder is a well-liked unsupervised feature 
extraction method in machine learning. An input layer, 
an output layer (used for decoding), and a hidden layer 
(used for encoding) make up a neural network. The 
objective of this network is to reconstruct the input in 
order to enable the hidden layer to fully comprehend the 
prominent features of the input. Information is trans-
ferred from the input layer to the output layer during 
the forward propagation process, when each neuron’s 
output is calculated successively, layer by layer. Back-
propagation is the technique of updating each neuron’s 
weight in a neural network, working backwards from 
the output layer towards the input layer. Inspired by the 
paper released in [17] and further developed in [18–20], 
a stack of shallow autoencoder models first encodes the 
input data and then reconstructs it to learn its features. 
This article [21] presented a deep network termed a con-
volutional autoencoder to extract features from compli-
cated image data. In order to improve the autoencoder’s 
node, researchers implemented a convolutional layer 
and a pooling layer. The automatic encoder is convolu-
tionally trained and produces superior results when fed 
picture data directly. To improve the overall progress 
of treatment plans and processes, new techniques are 
adapted [22, 23]. Cancer digital twins are a relatively new 
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approach that uses a range of AI and biological method-
ologies to process input data and then represents exact 
therapy procedures [24]. Since ML methods yield legiti-
mate and trustworthy conclusions without requiring 
deep learning about the input data, they are regarded 
as important analytical techniques [25]. AI models are 
taught to gradually assimilate new information through 
the use of the incremental technique in machine learn-
ing. This gives models the capacity to maintain and 
advance existing knowledge, providing a basis for fur-
ther development. In machine learning, autoencoder 
is a popular unsupervised feature extraction technique 
[26, 27]. Because of this, machine learning (ML) is being 
used more and more in a variety of sectors, such as engi-
neering, economics, and healthcare [28]. Reconstructing 
the input is the aim of this network to allow the hidden 
layer to completely understand the salient characteristics 
of the input. The transformation of raw data picture files, 
for instance, into numerical characteristics that may be 
utilised with machine learning methods, is a typical use 
case for feature extraction [29].

Predictive model based on deep neural network
Literature [30] made a bidirectional recurrent neural net-
work model for predicting disease risk. For individual dis-
ease risk prediction, they chose three long-term diseases 
with high rates of occurrence. In this study, the design of a 
model to predict the chance of disease was looked at. Intro-
duced a multimodal learning strategy, which involves using 
multimodal learning on different types of medical data 
and fusing the traits that were learned. The phenomenon 
referred to as “catastrophic forgetting” presents an addi-
tional challenge to deep neural networks and digital twin 
integration. This refers to the inability to modify specific 
parameters, such as the number of neurons, hidden layers, 
number of times, and learning rate, once they have been 
confirmed during the definition of the neural networks 
and its digital twin’s structure, unless the network and 
digital twin system are reset. This strategy is used to pre-
dict the risk of disease. Researchers merged support vector 
machines and deep belief networks in the literature [31].

Based on the research that has already been done, there 
have been many great results in the study of disease pre-
diction models, but there are still some problems:

(1)	 Even though the deep neural network has got-
ten pretty good at making predictions, the way it 
is trained makes it hard to train and often takes a 
long time. At the same time, medical data in the 
real world is growing all the time. Existing pre-
diction models can’t keep the knowledge they’ve 
learned from training, so they have to retrain every 
time the data changes. A concept of a bidirectional 

recurrent neural network for illness risk prediction. 
They selected three chronic diseases with high inci-
dence rates for the purpose of predicting each per-
son’s risk for each disease. A model to forecast the 
likelihood of an illness was designed. Introduced a 
multimodal learning technique that combines the 
learnt features with multimodal learning applied to 
various medical data types.

(2)	 The BLS model can be trained quickly, and the 
model can be quickly reconstructed through incre-
mental learning. However, its basic structure is not 
good at learning features, and it is not good for 
environments with a lot of complex data.

This paper suggests a prediction model based on 
denoising autoencoder and width learning (DAE-BLS) to 
solve the problems listed above. Next, the details of how 
it was built are given.

Denoising autoencoders with wide learning 
(DAE‑BLS)‑based predictive models
This section will explain how the model suggested in 
this paper will be put into place. Figure  1 shows how 
the model is put together. The model in this paper can 
be generally split into two parts: the pre-processing 
module and the DAE-BLS module. When time series 
predicting and digital twin-enabled simulation are con-
sidered, the structural differences between a BLS and a 
deep neural network become even more pronounced. 
It may be observed that BLS favors network construc-
tion along “width” rather “depth,” a deliberate decision 
that is consistent with the concepts of digital twin sys-
tems. The model is used by medical equipment that you 
wear. The data from the electronic medical records are 
used as input. Using visual, aural, reading, writing, and 
kinaesthetic approaches to teach a subject is known as 
multimodal learning. By aligning the delivery of knowl-
edge with the most effective way for students to learn, it 
aims to raise instructive standards. This model’s benefits 
are that it is easy to use and works well. It also adapts 
well to an unstable environment, so the results it pre-
dicts can be used in time to make good decisions.

Data pre‑processing
Due to noise, incompleteness and inconsistency, the 
actual collected medical data cannot be directly used for 
prediction tasks. Therefore, data pre-processing steps 
are required before data analysis to extract effective 
data features. Data pre-processing including missing 
value processing, data standardization processing, data 
imbalance processing, etc. The pre-processing process 
is shown in Algorithm 1.
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Algorithm 1 Pre-processing process

There are many reasons why there are missing values in 
the medical data that has been gathered, such as patients 
wanting to protect their privacy, nurses making mistakes, 
patients not getting a full physical exam, etc. When missing 
data is used directly for classification, it will lower the rate 

of accuracy. So, for the information This study uses a bet-
ter way to explain the k-nearest neighbour (KNN) algorithm 
to fill in missing values for the missing problem. The sample 
has been used up.Most of the time, different evaluation fac-
tors in medical data have different sizes and units, which will 

Fig. 1  Disease prediction model structure
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change the results of analysing the data. This paper decides 
to do this in order to get rid of the dimensional influence 
between indicators and to take into account the effect of 
more medical data on parameter definitions. The findings of 
data analysis are often affected by the size and unit differ-
ences between various assessments elements found in med-
ical data. In order to eliminate the dimensional influence 
between indicators and account for the impact of additional 
medical data on parameter definitions, this study makes this 
decision. When compared to the heart failure dataset, the 
training time improvements in the diabetic patient data-
sets are less pronounced for both the original BLS and the 
improved DAE-BLS. There is a need for more studies with 
bigger sample sizes and more complicated databases, as this 
discrepancy may be related to variables like dataset size and 
complexity. For normalisation, use the Z-score normalisa-
tion method. This method gives the mean and standard 
deviation of the original data to standardise the data so that 
the processing data fits the standard normal distribution. 
This means that the mean is 0 and the standard deviation is 
1, and the transformation function for the mean is the same 
as the transformation function for the standard deviation.

Among the variables considered, µ represents the aver-
age value of the entire set of sample data, while σ denotes 
the standard deviation of the samples. The distribution 
of disease data is characterised by an evident imbalance, 

(1)X∗ =
x − µ

σ

with a much smaller number of categories representing 
diseased instances compared to the number of categories 
representing normal instances. In order to address the 
issue of data imbalance, the present study employs the 
Synthetic Minority Over-sampling Technique (SMOTE) 
Algorithm as a pre-processing method. The method 
under consideration exhibits dissimilarities when com-
pared to the oversampling technique that relies on the 
straightforward duplication of minority class data. The 
proposed method generates additional instances of the 
minority class by employing linear interpolation tech-
niques on the current minority class samples.

DAE‑BLS model

(1)	Model structure

DAE is an effective variant of autoencoder. Its main idea 
is: first manually add random noise to the original input data 
to make it a corrupted version; then train the autoencoder 
so that it can be reconstructed from the corrupted version 
of the data the original input. The DAE-BLS model uses the 
patient’s data to forecast the likelihood that the patient will 
get unwell in the future, following the pre-processing mod-
ule. Additionally, the model’s flexibility is increased by using 
the recently created data to update the model’s parameters 
gradually. The DAE structure is shown in Fig. 2.

In Fig. 3, D refers to adding random noise to the origi-
nal input M to make it a corrupted version M , then let 

Fig. 2  DAE structure
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P = f (θM + β) . Among them, θ is a mapping matrix to be 
learned, and β is a deviation vector, the obtained P is the 
hidden layer obtained after encoding, which is the fea-
ture of the original data that is expected to be extracted. 
The decoder part relies on the feature representation P to 
reconstruct the original data M , and optimizes the self-
encoder by minimizing the construction error. Parameters. 
The features extracted from the noise-polluted samples 
are more representative of the essence of the original input 
and more adaptable to noisy environments. A common 
use case for feature extraction is the conversion of unpro-
cessed data image files, for example into numerical features 
that may be used with machine learning techniques. By 
extracting the geometry of an object or the redness value 
from an image, data scientists can develop new features 
that are appropriate for machine learning applications. BLS 
is simple and efficient, but it directly uses the original data 
for simple processing and then enters the system. It cannot 
extract enough features from complex and noisy medical 
data, resulting in low accuracy of the prediction model. For 
complex and chaotic medical data environment, in order to 
improve the feature extraction capability of BLS, this paper 
introduces DAE into the architecture design of BLS, thus 
proposing the DAE-BLS model, whose structure is shown 
in Fig.  3. The DAE-BLS model combines the characteris-
tics of DAE and BLS, it not only ensures the efficient com-
puting ability of the model, but also enhances the feature 
extraction ability of the model.

(2)	Complexity analysis of the model

The training process for the majority of deep neural 
networks typically involves two distinct stages, namely 
forward propagation and reverse propagation. Deep neu-
ral network training necessitates considerable thought in 

order to stabilize learning, start with normalized input 
data. For efficient gradient propagation, use an appropri-
ate activation function. Use weight initialization tech-
niques to keep gradients from inflating or vanishing. Since 
the network structure of ordinary neural networks is fre-
quently set and unchangeable throughout training, many 
models achieve the goal of increasing accuracy by repeat-
edly changing the network topology. Experts utilize the 
Convolutional Neural Network (CNN) machine learning 
method and K-Nearest Neighbor (KNN) machine learn-
ing algorithm to accurately predict diseases. A collection 
of disease symptoms is necessary for disease prediction. 
Backpropagation is a neural network technique that 
includes adjusting each neuron’s weight, starting from the 
output layer and working backwards towards the input 
layer. Using the loss function, this weight update is carried 
out layer by layer. This layer-by-layer gradient calculation 
is part of the process of updating each neuron’s weight. 
Hence, in scenarios where the network comprises numer-
ous layers, the deep neural network is prone to encounter-
ing local optima and experiencing the vanishing gradient 
problem. Instances of gradient explosion, sluggish conver-
gence, and similar phenomena are seen. When incremen-
tal learning is not employed, the training procedure of the 
DAE-BLS model follows a similar approach to that of typi-
cal neural networks. The training is conducted by specify-
ing the amount of samples and network parameters. One 
of the examples, as illustrated in Fig. 4 The model’s hidden 
layer is comprised of two components, namely mapping 
nodes and enhancement nodes.

The DAE-BLS model uses the feature Tn extracted by 
DAE as the mapping layer, Tn = [T1,T2, · · · ,Tn] . Then 
the features obtained by the mapping layer are input into 
the enhancement layer part of the model, and Hj is used 
to represent the jth group of enhanced nodes, then there is

Fig. 3  DAE-BLS model structure
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Among them, ξj is a nonlinear activation function; 
Whjand βhj are random weights and biases respectively. 
Then, m groups of enhanced nodes are concatenated 
into Hm = [H1 ·H2, · · · ,Hm] . Finally, the output of the 
enhanced layer and the mapping layer the outputs are 
spliced together, recorded as A = [Tn | Hm] , and the 
final output of the model is

Among them, Wm is the weight from the hidden layer 
to the output layer. Since Whj and βhj in the enhance-
ment layer mentioned above are randomly generated 
and remain unchanged during the training process, the 
parameters of the DAE as the mapping layer also remain 
unchanged, so the whole network needs to learn only 
Wm weights, and Wm can be quickly calculated by ridge 
regression. For ordinary neural networks, the weights are 
gradually updated using gradient descent one by one. For 
the width learning system, there is no weight update pro-
cess, but the weights are calculated directly in one step.

In contrast to the deep neural network with several 
hidden layers, the DAEBLS model has a straightforward 
architecture, a reduced number of parameters requiring 
updates, and simplified weight computation. In contrast to 
the original BLS model, the model exhibits a DAE struc-
ture within the mapping layer, resulting in enhanced fea-
ture extraction capabilities. Furthermore, when compared 
to alternative deep neural network models, the model 
architecture presented in this study exhibits dynamic 
characteristics during the training procedure. The incre-
mental technique in machine learning teaches AI models 
to gradually take in new information. This provides mod-
els with the ability to preserve and improve upon current 

(2)Hj = ξj TnWhj + βhj , j = 1,2, · · · ,m

(3)Y = AWm

knowledge, serving as a foundation for ongoing progress. 
Incremental learning has a number of benefits over clas-
sical machine learning, which necessitates a training set 
beforehand: (1) It can learn without a large enough train-
ing set before it starts operating; (2) It can continually 
learn to grow better while the system is operating; and (3) 
It can adjust to modifications in the target concept. This 
dynamism allows for efficient updates via incremental 
learning, hence enhancing the model’s training efficacy.

(3)	Incremental learning method of the model

During the training process of ordinary neural net-
works, the network structure is often fixed and immu-
table, so many models achieve the purpose of improving 
accuracy by continuously modifying the network struc-
ture and then repeating training. Since the network 
topology of regular neural networks is frequently set and 
unchangeable throughout training, many models achieve 
the goal of increasing accuracy by repeatedly changing 
the network structure. The trained model dynamically 
grows the model structure, and the dynamic incremental 
learning algorithm may effectively utilize this to update 
the model’s weight in a convenient and effective way.

If the model cannot achieve the expected accuracy 
after training, the common solution is to insert addi-
tional enhanced nodes to obtain better performance. 
In order to ensure the performance of the model, this 
paper uses BLS incremental learning algorithm [11] 
based on Incremental learning algorithm for DAE-BLS 
method, the process is as follows.

Step 1: Ensure that the model structure remains 
unchanged. After the enhancement nodes are 
added, the new hidden layer becomes

Fig. 4  Comparisons of experimental results for heart failure
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Among them, ξ is the activation function; Wm+1 and 
βm+1 are the new random weight and random bias of 
the enhancement layer, respectively.

Step 2: Calculate the pseudo-inverse matrix of 
Am+1 , namely

In

Step 3: Update the output weight Wm+1 as

This method only needs to calculate the pseudo-inverse 
of the newly added enhanced node on the basis of the 
original hidden layer, instead of calculating the entire 
Am+1 , which greatly reduces the update time and makes 
it possible to dynamically update the output weight.

In summary, the training steps of the DAE-BLS model 
are shown in Algorithm 2.

Algorithm 2 DAE-BLS training steps

(4)Am+1 =
[

A | ξ
(

TnWm+1 + βm+1

)]

(5)
(

Am+1
)+

=

[

A+ − DBTBT
]

BT = {C+,C �= 0

(

1+ DTD
)−1

BTA+,C = 0,C = ξ
(

TnWm+1 + βm+1

)

−AD,D = A+ξ
(

TnWm+1 + βm+1

)

.

(6)Wm+1 =

[

Wm − DBTYBTY
]

Experimental detail and result analysis
In this paper, multiple simulation experiments have 
been carried out on data sets with different formats 
and different data volumes to verify the performance 
of the proposed model. This experiment is based on 
the Python language, Tensorflow and PyWavelets 
and other frameworks, and the hardware conditions 
are NVIDIA GeForce RTX 2070 SUPER GPU, AMD 
Ryzen 536,006-Core Processor 3.60  GHz CPU, 16GB 
memory.

Structured data
This paper uses the Diabetes 130-US hospitals diabetes 
data set [16, 17] for simulation experiments. The diabetes 
data set collects 10 years (1999–2008) clinical care infor-
mation of 130 hospitals and IDNs in the United States. 
The data set contains a total of 101,766 cases More than 50 
characteristics of patients collected by the hospital, includ-
ing patient number, race, gender, age, type of admission, 
length of stay, medical specialty of the admitting physician, 
number of laboratory tests, HbA1c test results, diagnosis, 
number of medications, diabetes medications The number 
of emergency visits in the year before hospitalization, etc.
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This paper uses the model constructed to predict the 
patient’s readmission. The readmission labels in the data 
set are divided into three categories: readmission within 
30 days, admission after 30 days, and no admission. Digi-
tal twins serve as the real-time digital replica of a physical 
system or process and are employed in system optimiza-
tion and simulation. One method for creating a digital 
twin model using data is to use neural networks, particu-
larly in cases where a physics-based model is unavailable 
or not very precise.

Another dataset is the dataset of hospitalized patients 
with heart failure [32], which uses electronic health data 
collected from patients hospitalized in a hospital. There 
are obvious differences in the system, so this data set is 
more suitable for medical system. There are multiple pre-
diction labels in the data, and death within 28 days and 
readmission within 28 days are taken as the prediction 
labels.

Experimental results

(1)	Prediction of readmission for heart failure

After the above pre-processing, a heart failure data set 
containing 2516 pieces of 172-dimensional medical data was 
obtained. It was noticed that the data volume of this data set 
was relatively small, and a variety of algorithm experiments 
were compared on this data set. The results are shown in the 
Table 1. The result comparison is shown in Fig. 4.

It can be seen from the comparison that under the 
premise of ensuring the prediction accuracy, compared 
with the deep neural network, the neural network with 
a wide structure (BLS and DAE-BLS) not only achieves 
the best accuracy (96.92% and 97.12%), Moreover, the 
time required for training is greatly reduced, and the 
performance is effectively improved. Since the network 
topology of regular neural networks is frequently set and 
unchangeable throughout training, many models achieve 
the goal of increasing accuracy by repeatedly changing 
the network structure.

This is because the structure of the width neural net-
work is simple and does not need to be solved by gradient 

descent. However, due to the limited size of the data set, 
there may be some deviations in the results, so Next, we 
will use the diabetes dataset with more data and more 
chaotic data to conduct experiments.

(2)	Diabetes readmission prediction after the above pre-
processing, 127,386 diabetes datasets containing 
111-dimensional medical data were obtained. Com-
pared with the heart failure database, the diabetes 
database has many characteristics and a large amount 
of data. The same algorithm was applied to the dia-
betes data set for experimental comparison, and the 
results are shown in Table 2. The comparison of results 
is shown in Fig.  5. The digital twin-enhanced algo-
rithms and deep-structured neural networks usually 
use more parameters in order to increase accuracy. It 
takes a long time and a lot of technology to train most 
networks with a deeper structure, and it is challenging 
to examine the complex architecture analytically and 
in relation to digital twin surroundings.

Through the experimental results, it can be seen 
intuitively that in such a data environment with a large 
amount of data and complex features, the accuracy of 
the original BLS decreases, while the prediction model 
DAE-BLS proposed in this paper is not only in terms of 
accuracy but also in terms of It has a great advantage in 
training time. In contrast to alternative deep-structured 
neural networks, this approach remains effective. This is 
a result of the denoising autoencoder improving the orig-
inal BLS’s capacity for feature extraction. It only requires 
an additional 8  s of training time, but it has resulted in 
a roughly 2% improvement in accuracy rate compared to 
the original BLS.

ECG data

Introduction to experimental datasets  This study uti-
lises the MIT-BIH arrhythmia database [19] for conduct-
ing simulation tests. The Massachusetts Institute of Tech-
nology offers this database for the purpose of studying 

Table 1  Heart failure prediction experiment results

Method Training Accuracy Test Accuracy Training Time/s

Logistic Regression 85.25 83.24 0.07

Random Tree 96.95 92.10 0.14

Deep Neural Networks (DNNs) 98.95 95.34 12.51

Convolutional Neural Networks (CNNs) 99.44 95.82 7.05

Wide Neural Network (BLS) 98.79 96.92 0.13

DAE-BLS 99.55 97.12 1.20
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arrhythmia. It is one of the three globally acknowledged 
electrocardiogram (ECG) datasets that serve as clinical 
benchmarks. The MIT-BIH arrhythmia database com-
prises a collection of 48 dual-channel ambulatory elec-
trocardiogram (ECG) signal records, with each record 
exceeding a duration of 30  min. The study participants 
consisted of 25 male individuals ranging in age from 32 
to 89, as well as 22 female individuals ranging in age from 
23 to 89. The total number of heartbeats recorded during 
the study was 109,500, with approximately 30% of these 
heartbeats classified as abnormal. The heart’s pulsations 
serve as a means of prognostication.

Abnormal heart beat test results  In this paper, a series 
of algorithm experiments and comparisons were carried 
out on the abnormal heart beat data set after the above 
pre-processing, and the experimental results are shown in 
Table 3. The comparison of the results is shown in Fig. 6.

It can be seen from the experimental results that the 
model based on the width learning system significantly 
improves the training speed of the model compared with 
other deep learning models. Deep learning requires a 

lot of data to function. It can be costly to train it using 
huge and complicated data models. Extensive machin-
ery is also required for sophisticated mathematical cal-
culations. Although DAE-BLS improves the accuracy 
of the width learning system to a certain extent, it does 
not improve enough. Obviously, this may be because 
the accuracy of the model in this dataset is already high 
(nearly 98%).

Image data
In the above data set, the image data format obtained in 
this paper is 224 × 224 × 3, 1 148 images are the training 
set, and 545 images are the test set. A series of simula-
tion experiments were carried out in this paper, and the 
results are shown in Table 4.

It can be seen from the experimental results that the 
introduction of DAE in the width learning system has sig-
nificantly improved the effect of the original BLS, and the 
accuracy rate has been increased by about 5%, but it also 
obviously takes more training time (about 30  s more ), 
probably because the denoising autoencoder takes more 
training time to process the image data. Nevertheless, the 
DAE-BLS model is still a fast and efficient model compared 
with other algorithmic models.

Table 2  Diabetes prediction experiment results

Method Training Accuracy Test Accuracy Training Time/s

Logistic Regression 73.21 72.46 1.98

Random Tree 91.24 90.26 2.06

Deep Neural Networks (DNNs) 95.68 93.79 95.19

Convolutional Neural Networks (CNNs) 95.02 94.22 105.76

Wide Neural Network (BLS) 94.18 93.32 52.46

DAE-BLS 95.16 94.88 54.73

Fig. 5  Comparison of diabetes experiment results



Page 12 of 14Kulkarni et al. BMC Medical Informatics and Decision Making           (2024) 24:92 

Incremental learning
This paper designs experiments on the Diabetes 130-
US hospitals diabetes data set used above to prove the 
feasibility of incremental learning used in the DAE-
BLS model. First, set the initial enhancement node of 
the model to 1 000, and then in the initial model train-
ing If it is good, use incremental learning to add 1,000 
incremental nodes for rapid reconstruction, and com-
pare it with retraining a model. The results are shown 
in Table 5.

It can be seen from the experimental data that it only 
takes 9.28  s to reconstruct the augmented nodes from 
1000 to 2000 using the incremental learning algorithm, 
compared to 27.15  s for retraining a model with 2000 
augmented nodes. The training time of nearly 17  s is 
saved. The experimental results show that the proposed 
model can achieve rapid reconstruction when the model 
structure needs to be changed. The introduction of DAE 
strengthens the feature extraction ability of BLS with-
out destroying the superiority of its width structure. 

Table 3  Experimental results of abnormal cardiac beat prediction

Method Training Accuracy Test Accuracy Training Time/s

Logistic Regression 86.26 82.91 26.00

Random Tree 96.91 92.44 20.12

Deep Neural Networks (DNNs) 98.34 96.14 54.86

Convolutional Neural Networks (CNNs) 98.19 97.72 122.31

Wide Neural Network (BLS) 98.75 97.96 9.55

DAE-BLS 98.34 98.75 11.39

Fig. 6  Comparison of abnormal heartbeat test results

Table 4  Cancer CT image prediction experiment results

Method Training Accuracy Test Accuracy Training Time

Logistic Regression 98.95 76.12 84.88

Random Tree 98.42 72.64 77.07

Deep Neural Networks (DNNs) 92.16 82.18 288.22

Convolutional Neural Networks (CNNs) 86.08 86.22 4699.32

Wide Neural Network (BLS) 88.77 78.10 37.24

DAE-BLS 85.52 84.75 96.18
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Therefore, the characteristics of high efficiency and incre-
mental learning of BLS training are retained. Originating 
from the metaverse and digital twin technology, con-
sumer health (MCH) is undergoing a paradigm change. 
A new era of disease prediction models has been brought 
about by the combination of bioinformatics and health-
care Big Data. These algorithms utilize extensive medical 
data to forecast illnesses before symptoms appear.

Conclusion
Elevating the standards of healthcare and medical ser-
vices has consistently been a top priority in our country. 
Disease prediction, in particular, represents a highly mean-
ingful and essential endeavour. In this paper, we introduce 
a novel approach that leverages digital twin technology 
to advance the field of disease prediction. The proposed 
method, referred to as DAE-BLS, combines the power of 
denoising autoencoders with the robustness of digital twin 
systems, thereby enhancing the predictive capabilities of 
the original BLS model while retaining its efficiency in 
handling complex and chaotic medical data. The incorpo-
ration of digital twin technology into the disease predic-
tion model represents a pivotal shift, allowing for more 
precise and agile predictions across a range of real disease 
datasets. However, despite the promising performance 
exhibited by the model on multiple datasets, certain chal-
lenges remain, necessitating further research. For instance, 
in the case of diabetes patient datasets, both the original 
BLS and the enhanced DAE-BLS exhibit less noticeable 
improvements in training speed compared to the heart 
failure dataset. This discrepancy may be attributed to fac-
tors such as dataset size and complexity, indicating the 
need for additional experiments with larger sample sizes 
and more intricate databases. Similarly, in the breast can-
cer dataset, DAE-BLS requires significantly more time 
than BLS, potentially due to the processing demands of 
image data by the designed DAE. To further enhance the 
model’s performance on image data, the structure of DAE 
may require refinement. In future research endeavours, we 
will explore more comprehensive data preprocessing tech-
niques and leverage domain-specific medical knowledge 
to optimize the predictive model further. The integration 
of digital twin technology into the proposed method opens 

up new possibilities, extending its application to a broader 
spectrum of medical scenarios. This multidisciplinary 
approach, encompassing data science, medical expertise, 
and digital twin innovations, promises to shape the future 
of disease prediction and healthcare services.
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