
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Berkhout et al. BMC Medical Informatics and Decision Making          (2024) 24:100 
https://doi.org/10.1186/s12911-024-02486-3

Background
Decision making in healthcare is complex and increas-
ing in complexity [1]; notably in hospital environments 
where the information density is high, e.g., emergency 
departments, oncology departments, and psychiatry 
departments [2–4]. For example, within the Intensive 
Care Unit (ICU), healthcare professionals are faced with 
numerous complex decisions every day, many of which 
are made under time pressure. Zavala et al. [5] stated 
that consultation time is limited for physicians, affecting 
their decision making. This can easily lead to errors and 
adverse events causing an increase in healthcare costs.
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Abstract
Background  Decision-making in healthcare is increasingly complex; notably in hospital environments where the 
information density is high, e.g., emergency departments, oncology departments, and psychiatry departments. This 
study aims to discover decisions from logged data to improve the decision-making process.

Methods  The Design Science Research Methodology (DSRM) was chosen to design an artifact (algorithm) for the 
discovery and visualization of decisions. The DSRM’s different activities are explained, from the definition of the 
problem to the evaluation of the artifact. During the design and development activities, the algorithm itself is created. 
During the demonstration and evaluation activities, the algorithm was tested with an authentic synthetic dataset.

Results  The results show the design and simulation of an algorithm for the discovery and visualization of decisions. 
A fuzzy classifier algorithm was adapted for (1) discovering decisions from a decision log and (2) visualizing the 
decisions using the Decision Model and Notation standard.

Conclusions  In this paper, we show that decisions can be discovered from a decision log and visualized for the 
improvement of the decision-making process of healthcare professionals or to support the periodic evaluation of 
protocols and guidelines.
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Limitations of current systems
Protocols, hospital information systems, and (clinical) 
decision support systems (CDSSs) are in place to sup-
port the healthcare professional during their work [6]. 
CDSSs aid healthcare professionals with their decision-
making process. The healthcare professional enters 
patient data into the CDSS, and the system advises on 
the best course of action [7]. A CDSS uses predefined 
rules to determine the best available option using rel-
evant and available patient data. However, the growing 
number of CDSSs, monitoring systems, and predictive 
tools has not lowered inaccuracies in decision making 
[8, 9]. Notably, monitoring systems and CDSSs have 
increased the number of alarms to which a healthcare 
professional may be exposed to as many as 1000 alarms 
per day [10]. The majority (between 80 and 99%) of these 
alarms do not require immediate attention, resulting in a 
decreased response rate and a phenomenon experienced 
by healthcare providers described as ‘alarm fatigue’ [10, 
11]. Alarm fatigue increases the clinician’s response time 
or decreases the response rate due to too many alarms 
and eventually causes them to be desensitized [12, 13]. 
Numerous attempts have been made to address both the 
deficiencies in existing decision support systems and the 
resulting alarm fatigue, often with the introduction of yet 
another new, innovative tool/application [8, 14]. Many 
of these developments fail to reach clinical implementa-
tion, fostering an increasing level of cynicism and ‘inno-
vation fatigue’ instead [15, 16]. This is part of a bigger 
trend, stated by Granja et al. [17] that one of the barri-
ers for implementation is the undefined role and change 
of work practice of the parties involved [17]. In addition, 
maintaining the knowledge within the CDSSs is time 
consuming, and thus costly, while it is critical for a suc-
cessful implementation of a CDSS into the workflow of 
healthcare practitioners [18, 19]. It is clear that an alter-
native approach must be adopted focusing on the trend 
of AI and data analytics [20].

Objective
Therefore, rather than adding a new system and/or more 
alarms and notifications into daily healthcare processes 
in hospitals, we aim to explore whether existing systems 
can be optimized by adding retrospective analysis of 
decision log files stored in existing hospital systems, e.g., 
the electronic health record, CDSSs, and hospital infor-
mation systems. Furthermore, the aim is to improve the 
decisions, using retrospective data, without the burden of 
a new implementation or new system into the workflow 
of daily caregivers.

Decisions in data
Decisions are logged daily into information systems or 
CDSSs and the decision logs can be exported from the 
information systems [21]. The decision logs provide a 
direct representation of the day-to-day decisions made 
by healthcare professionals. A decision log consists of 
a (trace) ID, a timestamp, a (set of ) condition(s), and a 
conclusion. An example of a simple decision log is shown 
in Fig.  1. In this example, the decision log comprises a 
patient ID, a timestamp, and three input values, Gender, 
Age, and Body Temperature. These input values are the 
conditions on which a treatment, in this case the conclu-
sion, is started; Treatment A or Treatment B.

To further elucidate the concept of decision logs, con-
sider the following real-world example from an emer-
gency department. The decision log captures critical data 
points such as patient ID, timestamp, presenting symp-
toms, vital signs, and the resulting treatment decision.

The Decision Model and Notation (DMN) standard can 
be employed to visualize and interpret this decision log 
[22]. DMN can also be employed to exchange and exe-
cute decisions in a CDSS. DMN allows for the graphical 
representation of the ‘how’ of decision-making, thereby 
facilitating a more transparent and understandable deci-
sion-making mechanism. For instance, the decision to 
“Administer Nitroglycerin” for a patient with “Chest Pain” 
and a Blood Pressure value of “160/90” can be modeled 
in DMN to show the decision tree or table that led to 
this particular treatment choice. This enables healthcare 

Fig. 1  Example of a simple decision log
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professionals to better understand the rationale behind 
each decision, aids in the periodic evaluation of protocols 
and guidelines, and can help with the training of junior 
nurses and their clinical decision making. By integrating 
DMN with decision logs into CDSSs, healthcare organi-
zations can achieve a more robust, transparent, and effi-
cient decision-making process.

Role of information technology
Because Information Technology is transforming hos-
pitals and the way healthcare is carried out and doc-
umented, huge amounts of patient information is 
generated, exchanged, and stored about patients. This 
includes all data relating to all aspects of care e.g., diag-
nosis, consultation, medication, and laboratory results. 
This data could potentially become readily available 
at the bedside of the patient to support decision mak-
ing using CDSSs [23]. Historical data gathered from 
patients can be leveraged to improve the CDSSs and 
provide feedback, which, in turn, improves the qual-
ity of decision making by healthcare professionals [24]. 
The decisions within logged data (decision logs) can be 
discovered using decision mining. With decision min-
ing, organizations can identify decisions and discover 
trends that are recorded in information systems such as 
electronic health records or CDSSs. Several classification 
algorithms can be used for decision mining to analyze 
decision logs [25]. Classification algorithms are used to 
place data into preset categories, which is a form of pat-
tern recognition [26]. There are different types of classifi-
cation algorithms, e.g., Decision trees, fuzzy algorithms, 
Random Forest, and Artificial Neural Networks [27, 28]. 
While classification algorithms are not new, using them 
for the discovery of decisions for retrospective analysis is 
[21, 25, 29]. Some attempts were taken, especially in the 
field of process mining [30–32]. For example, Bazhenova 
et al. [25] explored the usage of a neurofuzzy classifier 
for discovering decisions from a process event log. How-
ever, this was based on artificial neural networks, a type 
of algorithm that is considered a black box, introducing a 
new set of challenges [25].

In this study, we use a fuzzy-only algorithm as a basis 
for discovering decisions. The characteristics of fuzzy 
algorithms are, (1) that it can deal with uncertainty, 
which could arise as a common characteristic of health-
care data. (2) It helps mimic the logic of the human 
thought and (3) is a flexible machine learning technique 
while being explainable [33].

Therefore, we aim to answer the following research 
question: How can the fuzzy algorithm be adapted to dis-
cover business decisions and business logic in a healthcare 
context?

The remainder of this paper is structured as follows: 
First, the methodology section in which we explain how 

we employed the design science research approach. Next, 
we present the algorithm and explain how it works. Fur-
thermore, the algorithm is demonstrated using one case 
in the simulation section. This is followed by a discussion 
in which the practical and scientific implications of our 
study and the algorithm are considered. Finally, conclu-
sions are drawn, and future research directions are posed 
in the last section.

Methodology
To answer our research question, the Design Science 
Research Methodology (DSRM) was adopted for this 
study. DSRM is commonly used for wicked problems. As 
the healthcare system has modernized in the last decades, 
it has also become rich with complexity. It involves a 
series of moving parts with, e.g., different stakehold-
ers, financial concerns, clinical standards, health proto-
cols, and government regulations [34]. The complexity 
becomes even higher as every patient and every disease 
and underlying conditions comes with its own particu-
larities that directly or indirectly influence each other. 
Therefore, we consider the DSRM approach in adapting 
the algorithm appropriate considering the wickedness 
of the underlying problem. Moreover, the artifact/algo-
rithm we aim to construct/adapt will be novel, effective, 
and useful: another characteristic that justifies the DSRM 
approach. DSRM structures the development and vali-
dation of information system artifacts whilst requiring 
their relevance to be grounded in practice and their rigor 
based on the existing body of knowledge [35, 36]. This 
helps us structuring the development of the fuzzy algo-
rithm. One of the main advantages of the DSRM is that 
it focuses on the iterative development of artifacts, in our 
case the fuzzy algorithm, so that it can be utilized in a 
healthcare context. To further guide the development of 
the fuzzy algorithm we used the seven DSRM guidelines 
proposed by Hevner et al. [36] As such DSRM guides 
the definition of our study protocol. These guidelines are 
converted into six Design science research activities and 
accompanying tasks, see Table 1 [36, 37].

Although this research project and its underlying 
objectives encompass all phases, activities, and tasks 
outlined in Table 1, the focus of the current study is spe-
cifically on the third and fourth activities. This targeted 
focus is deliberate for several reasons. First, this study 
is part of a broader Ph.D. research project, and as such, 
the other activities—namely activities one, two, five, 
and six—are discussed in detail in separate studies that 
have been published elsewhere. Second, by concentrat-
ing on the third and fourth activities, this paper aims to 
delve deeper into these specific aspects, providing a more 
detailed and nuanced understanding that would not be 
possible if all activities were covered in a single paper. 
Third, the choice to focus on these activities aligns with 
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the project’s phased approach, allowing for a more struc-
tured and in-depth exploration of each component. The 
focus on these activities also gives the opportunity to 
adapt to the found results during the totality of the proj-
ect. Finally, for the sake of completeness and to provide 
a coherent narrative, we discuss the other activities and 
their outcomes briefly. This ensures a comprehensive 
understanding of the research project, from its inception 
to its current state, thereby making the reasoning behind 
each development stage explicit.

Activity one: identify problem & motivate
In order to set up the context for this research, semi-
structured interviews with experts from IT organizations, 
healthcare practitioners, and scientific researchers in the 
field of study were performed as part of a pre-study. The 
objective was to understand the potential of data that is 
gathered in hospital information systems and CDSSs and 
to identify the problem(s) currently existing.

Activity two: define the objectives of a solution
This activity aims to identify relevant algorithms by 
mapping gathered requirements to potential algorithms 
divided into three phases. The first phase consists of 
gathering requirements by conducting semi-structed 
interviews with researchers and data scientists work-
ing in a commercial environment who are familiar with 
data mining, process mining, decision mining, and AI. 
The second phase consists of identifying algorithms by 
conducting a literature review and conducting semi-
structured interviews. The third and last phase consists 
of mapping the requirements against the algorithms by 

experts in the field of decision mining. The outcome of 
this study is presented in [25].

Activity three: design and development
In this phase, the algorithm will be designed and adapted 
to fit in the evaluation phase by healthcare practitioners. 
Therefore, the normal course of events within the evalua-
tion process is changed as the algorithm that is designed 
will be added to the evaluation of made decisions or 
the evaluation of a protocol. The changes in the evalua-
tion are divided into five steps, as seen in Fig. 2 : [1] Data 
coming from healthcare practitioners, protocols, and 
guidelines are stored in hospital information systems and 
EPDs [2]. The log files of such systems can be extracted 
and transformed into a decision log, fig. 3 [3]. The algo-
rithm uses the decision log to analyze the data and [4] 
to visualize it into a human readable model, in this case 
using the Decision Model and Notation (DMN). DMN is 
the de facto standard for modeling and visualizing deci-
sions. A further elaboration on using this standard can 
be found in the discussion [5]. The output models can be 
used as extra input for [6] improving the protocols and 
guidelines. These steps can be executed multiple times as 
part of an iterative improvement of a protocol.

Activity four: demonstration
The algorithm must be validated after it has been 
designed. An experiment based on (1) synthetic or (2) 
real-life datasets is an appropriate research method to 
assess the effectiveness and applicability of a product, 
algorithm, method, framework, or category [39]. With 
synthetic datasets, the researchers can modify the model, 
the inputs, the experiment setting, and the actual simu-
lation through experiments. The model and experiment 
design for real-life data can still be controlled, but less 
control over the input and simulation can be claimed. 
For both synthetic and real-world-based studies, repro-
ducibility and traceability are essential needs [40]. In 
this study, we use a real-life decision, namely determine 
catheterization of a patient [41], but with artificially gen-
erated data, as there is a theoretical model available. The 
theoretical model is used to check whether the basic out-
put of the algorithm is accurate and valid.

The following components for the experiment setup 
are reported: Overview of the basic model, model logic, 
scenario logic, algorithm, and applied components [42]. 
Finally, it is necessary to report on the following aspects 
of the experiment’s execution: Initialization, runtime, and 
estimation methods, based on the approach of [43].

Activity five: evaluation
The evaluation phase commences following the algo-
rithm’s demonstration. In this activity, synthetic data is 
employed to simulate a decision log, serving as a basis for 

Table 1  DSRM activities
DSRM activity Tasks
1. Identify problem & 
motivate

Conducting interviews with experts from 
(IT) organizations, healthcare practitio-
ners, and scientific researchers. This study 
is already presented in [25]

2. Define the objectives of 
a solution

Identify appropriate algorithms and re-
quirements for decision mining discovery

3. Design and development Design of artifact (algorithm for discover-
ing decisions) for healthcare

4. Demonstration For the demonstration, a realistic case is 
used. The case is based on determining 
if a patient needs a catheter. This case is 
extracted from the RCN guidelines [38]

5. Evaluation In this paper, we show the feasibility of 
using an adapted fuzzy algorithm by 
evaluating the algorithm from a technical 
and theoretical viewpoint

6. Communication Performed during the full duration of the 
project for which different outlets are 
selected, such as symposia, workshops, 
conferences, and journals. This way, 
practitioners as well as researchers are 
informed about the results of the project
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Fig. 3  example of a decision log

 

Fig. 2  Process and usage of artifact
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evaluating the algorithm’s performance. The use of syn-
thetic data is a strategic choice for several reasons. First, 
it allows for the creation of a controlled environment that 
mimics an authentic context, albeit with artificial con-
tent. This approach aligns with Wieringa’s framework 
[43], which identifies two types of generalizations when 
transitioning from research to practice: inductive gener-
alization from small to large samples, and model-based 
generalization from experimental settings to real-world 
scenarios. In the next iteration of the algorithm, we also 
scale up to larger samples.

In our study, we opt for a relatively small sample size 
to facilitate a more manageable and focused evaluation. 
While the case under study aims to be as realistic as pos-
sible, the use of synthetic data serves as a stand-in for 
real-world data. This method enables us to test the algo-
rithm’s efficacy and reliability without the complexities 
and variabilities inherent in actual healthcare settings. 
This will be done in future iterations of designing the 
artifact, as mentioned by Hevner et al. [35]. Moreover, 
the synthetic data allows us to isolate specific variables 
and conditions, providing a clearer understanding of the 
algorithm’s performance and potential limitations [44]. 
As depicted in Fig. 4  , this approach provides a pathway 
for scaling up the findings to more complex, real-world 
cases in future research.

Activity six: communication
This activity aims to disseminate the results. Throughout 
the duration of this research project, several activities 
were conducted. The activities consisted of oral presenta-
tions for physicians, nurses, nurse students, and, IT pro-
fessionals. The poster presentation was held for people in 
the field of study. One paper is published in the proceed-
ings of a peer-reviewed conference. This publication is 
also part of disseminating the results of this study.

Algorithm design
In this section, we propose a methodology to discover 
and visualize multiple decisions extracted from an array 
of decision logs. The algorithm driving this methodology 
is a fuzzy classifier. The selection of this particular algo-
rithm was not arbitrary; it was the outcome of an evalu-
ation process involving multiple algorithms, done in an 
earlier study within this cycle [25]. The fuzzy classifier 
algorithm was one of the algorithms that could be used 
with a small adaptation by adding support for multiple 
decisions. Other studies already used a fuzzy algorithm 
to discover decisions, but they used a neurofuzzy classi-
fier [30, 45]. In this study we do not use neural networks, 
because they are not favorable to use as neural networks 
are prone to overfitting, are seen as black boxes which 
lack transparency, and have a computational burden [46].

The algorithm operates a dataset that is structured into 
columns with target values (output value) and input val-
ues. The target values are a one-dimensional array and 
are categorical. The input values are a two-dimensional 
array consisting of categorical or continuous columns, as 
seen in Fig. 5 .

When a column contains continuous values, the algo-
rithm will walk through this column in a loop and start 
with the first data point

The first step in this loop is analyzing the subset. The 
values of the selected continuous column, seen in Fig. 
6  , will be partitioned into multiple subsets by defining 
thresholds. To find these thresholds a function is called, 
that uses a method defined by Quinlan [47] that extracts 
the best threshold and its corresponding information 
gain ratio, by looping through all numbers and finding 
the best spot to split where the target values are divided 
the most [47]. In Fig. 6, the identified thresholds of a con-
tinuous column containing body temperature are pre-
sented. All subsets will be split until there is no longer a 

Fig. 4  Scaling up evaluation [44]
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subset where its best threshold has a greater information 
gain ratio than the defined minimum gain ratio, which is 
presented in Fig. 5.

To create the fuzzy aspect, transition periods are 
implemented. By extending each threshold to a given 

percentage into each subset it divides, see Fig. 6. This cre-
ates a point to create a linear line to distinguish where a 
particular temperature belongs. After the dataset is split, 
the transition periods are created to create a fuzzy transi-
tion between subsets. These are created by extending the 
thresholds with a certain given percentage of the subsets 
adjacent to it, visualized by Figs. 6 and 7.

Membership functions serve as the backbone of the 
fuzzy logic integrated into our algorithm. These functions 
are graphical representations that map each element in 
the input space to a degree of membership between 0 and 
1. In simpler terms, they quantify how much a particular 
data point belongs to a fuzzy set or category (Fig. 7).

Various types of membership functions can be used, 
such as triangular, trapezoidal, or Gaussian, depend-
ing on the specific requirements of the problem at hand 
[48, 49]. For the purpose of this study, we employ a trap-
ezoidal type of membership function tha t best suits the 
nature of our healthcare data.

In the context of our fuzzy classifier algorithm, mem-
bership functions play a pivotal role in translating 

Fig. 7  Trapezoidal membership function of fuzzy classifier algorithm

 

Fig. 6  Algorithm process

 

Fig. 5  Dividing in arrays
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continuous values into fuzzy categories. For example, 
consider a temperature reading of 36.5 °C. The member-
ship function will determine the degree to which this 
value belongs to different fuzzy sets like “Low,” “Normal,” 
or “High.” It could indicate that the value is 25% “Low” 
and 75% “Normal,” thereby providing a more nuanced 
understanding than a binary classification would. One 
of the key advantages of using membership functions is 
their ability to handle uncertainty and ambiguity effec-
tively. In healthcare settings, data can often be impre-
cise or incomplete. Membership functions allow the 
algorithm to work with this uncertainty by assigning 
degrees of membership to fuzzy sets of data, rather than 
forcing a hard classification like other classification algo-
rithms (e.g., C4.5). This is particularly useful for accom-
modating the natural variability and complexity often 
encountered in medical data. In practical terms, these 
membership functions can be invaluable for healthcare 
professionals. For instance, when diagnosing a condi-
tion that has a range of symptoms with varying degrees 
of severity, the membership functions can help in mak-
ing more informed and nuanced decisions. They offer a 
way to integrate a spectrum of clinical observations and 
test results into a unified decision-making framework. 
By incorporating membership functions into our fuzzy 
classifier algorithm, we aim to provide a tool that is not 
only accurate but also adaptable to the complexities and 
uncertainties inherent in healthcare decision-making. 
The pseudo-code of the fuzzy algorithm can be found in 
Appendix A.

The overall process of the adapted fuzzy algorithm 
is presented in Fig.  8 in Business Process Management 
Notation.

From dataset to DMN notation
Once the dataset has been partitioned and the fuzzy tran-
sition periods have been established, the algorithm pro-
ceeds to the crucial phase of rule formation. In this stage, 
the algorithm generates rules based on each unique com-
bination of variables in the dataset. These rules serve as 
the foundation for decision-making and are essential for 
the algorithm’s primary objective discovering and visual-
izing decisions. The rules are generated by evaluating the 
degrees of membership assigned to each data point in 
the fuzzy sets. For example, if a temperature reading of 
36.5 °C has a 25% membership in the “Low” category and 
a 75% membership in the “Normal” category, a rule might 
be generated that says, “If the temperature is around 
36.5°C, then it is Normal”. The confidence levels of each 
rule are saved, so that subject matter experts can validate 
the rules on their corresponding confidence levels.

After the rules are formulated, they are translated into 
an XML format compatible with Decision Model and 
Notation (DMN) decision tables. DMN is a standard for 

Fig. 8  Overall process of algorithm
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decision-making and provides a common notation that is 
easy to understand for both technical and non-technical 
stakeholders. This translation is vital for ensuring that the 
algorithm’s output can be readily interpreted and utilized 
by healthcare professionals such as nurses or physicians 
or changed and implemented into information systems.

To make the fuzzy values, generated by the algorithm, 
interpretable by human analysts, an encoding process is 
applied. This encoding process employs an interchange-
able encoder that uses positional terms to represent the 
fuzzy values. In fuzzy logic, a branch of mathematics and 
artificial intelligence, sets are often described in terms of 
degrees of membership. These degrees are typically cate-
gorized using specific terms from the field, such as ‘nadir’ 
for the lowest degree, ‘median’ for a middle degree, and 
‘zenith’ for the highest degree of membership in a fuzzy 
set. However, when communicating these concepts to 
Subject Matter Experts or those less familiar with the 
technical jargon, these terms are translated into more 
universally understood ordinal categories that are con-
text-specific, like ‘Low,’ ‘Normal,’ and ‘High.’ as shown in 
Table 2. This translation is essential for ensuring that the 
rules are not only accurate but also easily understandable. 
It allows healthcare professionals to quickly grasp the 
implications of the rules without having to delve into the 
complexities of fuzzy logic or algorithmic computations. 
The encoding process is particularly important in health-
care settings, where quick and accurate decision-making 
is often crucial. By translating complex fuzzy values into 
easily understandable terms, the algorithm makes it eas-
ier for healthcare professionals to integrate the outcomes 
into their decision-making processes. This can be partic-
ularly useful in high-stakes environments like emergency 
rooms or intensive care units, where decisions often must 
be made rapidly and with incomplete information.

Decision table normalization
After DMN decision tables are generated, an optional 
normalization process can enhance their utility and man-
ageability. This step involves identifying and consolidat-
ing rules that lead to the same decision outcome, thereby 
improving the table’s readability and ease of use.

Consider a straightforward example:
1) IF gender is Female and age is 24 and Temperature is 

Normal THEN Treatment is Treatment B.
2) IF gender is Female and age is 20 and Temperature is 

Normal THEN Treatment is Treatment B.

These could be consolidated into one rule:
If gender is Female and Age is 20 or 24 and Tempera-

ture is Normal THEN Treatment is B.
For a more complex normalization, consider the fol-

lowing rules:

1)	 IF Blood Type is O and Age is under 30 THEN 
Treatment is Treatment X.

2)	 IF Blood Type is O and Age is 30 to 40 THEN 
Treatment is Treatment X.

3)	 IF Blood Type is A and Age is under 30 THEN 
Treatment is Treatment Y.

4)	 IF Blood Type is A and Age is 30 to 40 THEN 
Treatment is Treatment Y.

These rules can be restructured into:

1)	 IF Blood Type is O and Age is under 40 THEN 
Treatment is Treatment X.

2)	 IF Blood Type is A and Age is under 40 THEN 
Treatment is Treatment Y.

This more advanced example shows that even complex 
decision tables can be simplified through normaliza-
tion without affecting the outcome or the integrity of the 
decisions. Importantly, the algorithm ensures that this 
simplified table remains a faithful representation of the 
original decision logic. This ensures that all unique rules 
that are discovered are shown in the final decision table.

Simulation case
To demonstrate the mechanics of the algorithm we use 
an authentic case in the healthcare domain consisting of 
synthetic data. This case is based on the decision made 
by nurses to insert a catheter. This decision is described 
in a guideline used by healthcare professionals. A good 
example would be the guideline created by the Royal Col-
lege of Nursing [38]. While the guideline consists of mul-
tiple steps, we extracted the decision of whether to insert 
a catheter. This decision is made based on three condi-
tions, (1) Consent, (2) Clinical consideration, and (3) Risk 
factor. Consent and Clinical consideration are Boolean 
variables and Risk factor is an integer variable. The Risk 
factor is interpreted and divided into Low, Medium, and 
High Risk. The outcome, inserting a catheter, is also a 
Boolean variable. A theoretical model of both the deci-
sion table and a decision requirement diagram (DRD) is 
created, presented in Figs. 9 and 10.

For the purpose of this simulation study, a synthetic 
dataset was created to represent a decision log for the 
clinical decision “Determine Catheterization.” The data-
set was generated using a data generator tool1 designed 

1 https://www.mockaroo.com/.

Table 2  Conversion from positional to translation term (given a 
situation of three positional terms)
Positional term Translation term
Nadir Low
Median Normal
Zenith High

https://www.mockaroo.com/
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to simulate real-world scenarios. This tool allows for the 
creation of synthetic data that closely mimics the char-
acteristics of actual clinical data, thereby enhancing the 
validity of the simulation.

After the synthetic dataset was generated, it was fol-
lowed by validating the data. The validation was con-
ducted by a researcher in the field. The researcher 
ensured that the data represented the variables and con-
ditions typically encountered in clinical settings for cath-
eterization decisions.

The synthetic dataset consists of 1,000 rows, each rep-
resenting a clinical scenario related to catheterization 
decisions. The dataset is complete, with no missing values 
in any of the columns. This completeness is intentional to 
focus the simulation on the decision-making processes 
rather than data quality challenges. In this case, we devi-
ated from the theoretical model by adding another input 
value that is influencing the decision, namely patient dis-
comfort. Patient discomfort is an integer between one 
and ten, where 1 is no discomfort and 10 is the most dis-
comfort a patient has experienced. It’s worth noting that 
while typical decision logs might include ‘Timestamp’ 
and ‘ID’ columns to track the timing and identity of each 
decision, these columns were deliberately excluded from 
the synthetic dataset used in this simulation. The ratio-
nale for this exclusion is that these columns are not per-
tinent to the decision-discovery process that is the focus 
of this study. A cutout of the first five rows of the decision 
log is presented in Fig. 11.

The risk factor is shown as an integer in the decision 
log. The algorithm will transform the numerical risk fac-
tor to a low, medium, or high risk using a fuzzy classifier. 
The algorithm is written in Python and runs in a docker 
container2. The decision log is converted to a comma 
separated value (CSV) file to load the decision log into 
the implementation of the fuzzy classifier algorithm. The 
next step is to assign the correct meta-data to the col-
umns, as seen in Fig. 12. In this case, the columns Con-
sent, Clinical Indications, and Catheterization contain 

2 https://github.com/HU-DIPO/DecisionMiningFuzzy.

Fig. 10  Theoretical model of DRD catheterization

 

Fig. 9  Theoretical model of decision table catheterization

 

https://github.com/HU-DIPO/DecisionMiningFuzzy
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categorical values (boolean) and the variables Risk fac-
tor and patient discomfort contain continuous values 
(integer).

The algorithm starts running after this step. In this 
simulation, the runtime of the algorithm was 2.18  s. 
Figure 13 presents the normalized decision table that is 
created from the decision log. The found decision rules 
are represented here. Figure 14 presents a DRD with the 
input values and the decision.

To simulate a second decision, another decision log, 
consisting of data for the decision Determine Clinical 
Indications is run through the algorithm. The decision 
Determine Clinical Indications consists of three input 
variables, namely: Intermittent, Suprapubic, and Urethral 
which are all Boolean variables. The runtime of the sec-
ond decision log was 1.68 s. Figures 15 and 16 present the 
model that is created by combining the first and second 
decision log. It contains a normalized decision table of 
the second decision and a DRD presenting the depen-
dency between Catheterization and clinical indications. 
In this simulation first the Determine Catheterization is 
executed, but the datasets can be executed in any partic-
ular order.

While the protocol for inserting a catheter is followed, 
another input variable is used in practice to make the 

decision. By using the algorithm the decision model, 
including the new variable is found and visualized.

Discussion
In this paper, we propose an algorithmic solution to dis-
cover business decisions and business logic in a health-
care context. The developed algorithm is based on a fuzzy 
decision tree classifier. Earlier approaches, for example, 
Bazhenova et al. [45], proposed an algorithm based on 
a neuro fuzzy classifier to discover business decisions 
and underlying business logic in event logs. However, 
neuro fuzzy classifiers are black-boxes and therefore not 
transparent and explainable. For the specific case of dis-
covering decisions in healthcare, black box algorithms 
are not preferable. For example, the algorithm is used to 
give feedback on a clinical decision support system or a 
physician. Both algorithms could discover the decisions 
from structured data and visualize them, but the neuro 
fuzzy classifier is not explainable. The fuzzy algorithm 
proposed in this paper is explainable and transparent by 
nature, which is one of the recurring challenges in devel-
oping trust for using algorithms and CDSSs [50].

One of the algorithm’s strengths lies in its generaliz-
ability. The algorithm is designed to work with a spe-
cific input format that closely resembles the output log 
files commonly generated by Clinical Decision Support 

Fig. 12  Assign meta-data to columns (screenshot from application to run the algorithm)

 

Fig. 11  Excerpt of decision log
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Systems (CDSSs) or Electronic Health Records (EHRs). 
This design choice was intentional and serves to enhance 
the algorithm’s applicability across multiple healthcare 
settings and systems. Because many healthcare institu-
tions use CDSSs or EHRs that produce log files in a simi-
lar format due to the fact of more standardization of data 
interoperability protocols e.g., HL7 [51], the algorithm 
can be readily applied without requiring extensive data 
transformation or pre-processing except a subject matter 
expert to check the relevant data columns. However, it’s 
worth noting that this strength is a double-edged sword. 
While the strict input format allows for broad applica-
bility across similar datasets, it also imposes limitations 
on the types of data the algorithm can process. Datasets 
that do not conform to this specific format would require 
additional manipulation, which could introduce errors or 

inconsistencies. Therefore, while the algorithm’s general-
izability is an advantage, it is not without constraints that 
users should be aware of.

The output of this algorithm is a Decision Require-
ments Diagram (DRD) and the underlying decision 
table(s) according to the DMN standard [52]. We argue 
that there are multiple reasons to visualize decisions in 
this standard. The first reason is that this standard is 
widely adopted in decision management systems and is 
gaining attention in the healthcare sector for modeling 
decisions for healthcare professionals due to the visu-
alization of decisions [53–55]. The DMN standard is 
understandable for healthcare professionals, e.g., nurses, 
but the decisions can be modeled by data or information 
analysts. An advantage of this standard is that the discov-
ered decisions and decision tables can be imported into 

Fig. 14  Decision table output of decision Determine Catheterization (screenshot)

 

Fig. 13  screenshot of the DRD output of a decision log
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decision management systems to, e.g., validate and test 
the identified decisions or potentially directly used in a 
CDSS as decision rules. For example, during the COVID-
19 pandemic, several decision models created in DMN 
were published to both the public and hospitals [54]. 
Another reason is that this standard supports integration 
with the Business Process Model and Notation (BPMN) 
[56]. Decisions are separated from process models for 
better maintaining the decisions and business logic since 
these rules change more often compared to the process 
model. Both standards are complementary to each other. 
This possible entanglement provides another advantage 
as process mining and decision mining can be combined. 
By using process mining algorithms to find process steps, 
decision mining algorithms can be used to find the deci-
sions and underlying business logic.

From a practical perspective, the discovery of decisions 
out of data can be used for improvements and evalua-
tion of decisions taken in practice. For example, in the 
Netherlands, a quality manager is assigned to a nurs-
ing department. The quality manager is responsible for 
maintaining the quality of the team and is in most cases 
a nurse. The output of this algorithm can be used to con-
firm the way of working with the protocols and guide-
lines for that department.

The algorithm itself has some technical limitations. As 
the algorithm is written in Python it cannot deal with 
heterogenous datasets and is therefore, at the moment 
limited to fixed datatypes. Another limitation is that the 
performance of the algorithm during execution becomes 
exponentially slower the larger the dataset is, both in the 
number of columns as well as in number of rows. Due to 

Fig. 16  Decision table of decision determine clinical indications (screenshot)

 

Fig. 15  DRD of combined decision logs (screenshot)
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this fact, we limited the number of input data columns 
to ten. For instance, if both the number of input values 
and the number of rows are near the limits, the execu-
tion time exceeds twenty hours. Although the algorithm’s 
performance could be enhanced by using other program-
ming languages like Java or C, we argue that when the 
algorithm is run only once or twice a year, performance 
becomes less important compared to the ease of use 
offered by Python.

The last technical limitation is that the fuzzy algorithm, 
at the moment, can handle a maximum of five positional 
terms, thus only recognizing five categories while, poten-
tially, more categories could be present in the data.

This limitation refers to the number of distinct cat-
egories that can be recognized for each variable, not the 
total across all variables in the dataset. This constraint is 
pivotal in maintaining algorithmic efficiency and clarity 
in decision-making processes. However, it can poten-
tially raise questions about the algorithm’s suitability for 
complex clinical scenarios involving more than five cat-
egories per variable. While scarce, to accommodate more 
than five categories in the algorithm, an adaptation can 
be made within the source code. This could, for example 
be necessary due to the number of categories in protocols 
present, however this increase of categories drastically 
impacts the efficiency of the algorithm.

From a practical viewpoint, we can identify a limita-
tion that the algorithm, at the moment, heavily depends 
on subject matter experts in both the data preparation 
as well as the validation phase. For the data preparation 
part, the subject matter expert must select or check rel-
evant columns in a large dataset that can be transformed 
into a decision log as the export of different systems dif-
fers. The algorithm can be used on a wide set of data, if 
the data structure is the same. Therefore, validation is 
important. For example, concerning the handling of out-
liers in data. The algorithm considers outliers as part of 
a spectrum rather than discrete exceptions. By apply-
ing fuzzy sets, these occurrences are integrated into the 
decision-making process with a degree of membership, 
acknowledging their existence without allowing them to 
skew the overall results. This method is particularly ben-
eficial in healthcare, where every data point, no matter 
how atypical, could be crucial. Thus, the algorithm rec-
ognizes and incorporates the unique characteristics of 
outliers, ensuring a comprehensive analysis. However, we 
suggest that the identified decisions must be validated by 
subject-matter experts, such as nurses or physicians, to 
be able to check the decisions and identify anomalies.

Conclusion & future work
In this study, we answer the following research question: 
How can the fuzzy algorithm be adapted to discover busi-
ness decisions and business logic in a healthcare context? 

We propose a novel approach to discover decisions from 
structured data using a fuzzy decision tree classifier and 
visualize them using the DMN standard. From a practical 
viewpoint, the visualization supports the understanding 
of the decision-making process and gives feedback to a 
physician or nurse. By using DMN as visualization it is 
both comprehensible for the physician or nurse as well 
as technically interchangeable between CDSSs. From a 
theoretical viewpoint, the proposed algorithm discovers 
decisions using structured data. Future work could be 
focused on testing the algorithm on more diverse data-
sets. Another study could be the comparison between 
different algorithms to see which algorithm has the best 
results on a specific dataset, which should be checked 
against subject matter experts. In the end, the algorithm 
could be tested with datasets from different healthcare 
organizations that use the same protocol or guideline to 
find similarities and deviations between the healthcare 
organizations.
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