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Abstract 

Prognosticating Amyotrophic Lateral Sclerosis (ALS) presents a formidable challenge due to patients exhibiting 
different onset sites, progression rates, and survival times. In this study, we have developed and evaluated Machine 
Learning (ML) algorithms that integrate Ensemble and Imbalance Learning techniques to classify patients into Short 
and Non-Short survival groups based on data collected during diagnosis. We aimed to identify individuals at high risk 
of mortality within 24 months of symptom onset through analysis of patient data commonly encountered in daily 
clinical practice. Our Ensemble-Imbalance approach underwent evaluation employing six ML algorithms as base 
classifiers. Remarkably, our results outperformed those of individual algorithms, achieving a Balanced Accuracy of 88% 
and a Sensitivity of 96%. Additionally, we used the Shapley Additive Explanations framework to elucidate the deci-
sion-making process of the top-performing model, pinpointing the most important features and their correlations 
with the target prediction. Furthermore, we presented helpful tools to visualize and compare patient similarities, offer-
ing valuable insights. Confirming the obtained results, our approach could aid physicians in devising personalized 
treatment plans at the time of diagnosis or serve as an inclusion/exclusion criterion in clinical trials.
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Introduction
Amyotrophic Lateral Sclerosis (ALS) is a rare, incur-
able, and progressive neurodegenerative disease that 
impacts the human motor system. The communication 
between the brain and muscles gradually deteriorates, 
ultimately resulting in paralysis and death. While its eti-
ology remains unknown, it typically afflicts individuals 

aged between 40 and 70, affecting both men and women. 
ALS exhibits significant clinical heterogeneity, manifest-
ing diverse symptoms and disease progression patterns 
among patients [1, 2]. The average life expectancy post-
symptom onset ranges from 2 to 5 years, with a global 
annual incidence of approximately 1.9 cases per 100,000 
individuals [3]. Given the complexity of ALS and its vari-
able clinical presentation, accurately predicting outcomes 
such as survival time and disease progression rate poses 
a substantial challenge for physicians. Therefore, it is 
imperative to conduct research aiming to develop and 
validate prognostic models to achieve more precise pre-
dictive results.
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Machine Learning (ML) has emerged as a powerful 
tool in improving disease diagnosis and prognosis. In the 
context of ALS, recent studies have explored various ML 
approaches for diverse predictive tasks [4–7]. ML algo-
rithms can extract information from training data, con-
vert it to knowledge, and apply it to solve various types 
of problems, such as classification, regression, and clus-
tering [8]. Learning from complex domains (e.g., ALS 
disease) is challenging, and ML techniques like Ensem-
ble Learning can help improve predictive performance. 
Ensemble Learning combines single predictive models 
to build a more complex one, aiming to surpass the per-
formance of each constituent model separately [9]. Addi-
tionally, medical data analysis often involves dealing with 
imbalanced datasets. This issue arises when there is a 
significant imbalance in the number of samples between 
different classes, resulting in a substantially lower repre-
sentation of one class compared to the others. Typically, 
the target prediction is linked to samples from the minor-
ity class, as in the case of detecting patients with lung 
cancer through the analysis of tomography images, where 
there are significantly more images of healthy patients 
(the majority class) than those depicting lung cancer 
cases (the minority class). In such scenarios, ML models 
frequently exhibit bias towards samples belonging to the 
majority class, resulting in an elevated misclassification 
rate within the minority class [10]. To mitigate the issue 
of imbalance, resampling techniques such as Undersam-
pling and Oversampling can be employed [11].

Efforts in ALS prognosis using ML should be directed 
toward the development of Clinical Decision Support 
(CDS) systems. CDS systems are computer programs 
designed to assist healthcare professionals in making 
more informed and timely decisions by integrating cur-
rent patient data with historical information from other 
patients, facilitating data-driven decision making [12]. 
We deemed it essential to develop CDS systems that 
are feasible for use on a large scale in primary care, tak-
ing into account financial limitations. One approach to 
achieving this goal is to select biological markers (bio-
markers) commonly used in routine ALS clinical practice. 
Such biomarkers may include clinical evaluations, assess-
ment of functional capabilities, and respiratory function 
measurements. These biomarkers are often derived from 
less expensive and complex procedures, making them 
more accessible.

Notably, some ML algorithms present results that 
humans cannot easily understand, decreasing their inter-
pretability (e.g., Artificial Neural Networks or Support 
Vector Machines). Interpretability, in this context, refers 
to the comprehensibility of the decisions made by the ML 
algorithm [13]. Addressing this issue is crucial to ensure 
the acceptance of CDS systems in clinical practice, as 

physicians require explanations for patient classifications. 
Hence, the development of CDS systems must prioritize 
interpretability concerns. Existing frameworks can be 
explored to elucidate the predictions generated by ML 
models, one of which is the Shapley Additive Explana-
tions (SHAP) framework [14]. SHAP employs a game-
theoretic approach to clarify the prediction for a specific 
instance by quantifying the contribution (SHAP value) of 
each feature to the classification process. Consequently, 
SHAP values provide insights into the influence of indi-
vidual features on the final prediction and their relative 
significance when compared to other features.

Related work
Van der Burgh et al. [4] demonstrated the positive impact 
of using Magnetic Resonance Images (MRI) and clinical 
information to classify ALS patients into survival groups 
(Short, Medium, and Long). They developed Deep Neu-
ral Networks models and obtained an accuracy of 84%. 
This study presented a high risk of model overfitting due 
to the reduced number of samples analyzed (n = 135). 
Kueffner et al. [15] presented a crowdsourcing challenge 
involving more than 30 teams. One of the target pre-
dictions was the probability of survival at 12-, 18-, and 
24-months using patient data from the first three months 
of records. A team using a Gaussian Process Regres-
sion model obtained the best performance compared to 
the others (Z-score ≈ 12). These studies used different 
performance metrics, and thus, it was not possible to 
directly compare their performance with this study.

Grollemund et  al. [16] presented a model based on 
Dimensionality Reduction to predict one-year survival 
probabilities. They used the Uniform Manifold Approxi-
mation and Projection (UMAP) algorithm to reduce the 
data. The resultant 2D projection was divided into three 
areas to classify the patients into Low, Intermediate, 
and High probabilities groups. The proposed classifier 
obtained superior performance (F1 score: 96%, Balanced 
Accuracy: 91%) than the Random Forest and Logistic 
Regression models. However, the total comprehension of 
the relationship between input and output variables can-
not be obtained because the adopted model is considered 
a black box approach, which degrades its interpretabil-
ity. In this study, we achieved a slightly lower Balanced 
Accuracy (88%) and evaluated models that were also con-
sidered black boxes. Differently, we delivered global and 
local explanations regarding the prediction mechanisms, 
including feature importance analysis and their correla-
tions with the target variable.

Tavazzi et  al. [17] presented a strategy based on a 
mutual information-weighted k-NN algorithm to han-
dle missing values in clinical register datasets. One 
target was to classify patients into Short and Long 
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survival groups. The authors evaluated Naïve Bayes 
classifiers built on the dataset using the proposed 
imputation method and achieved a superior perfor-
mance (AUC: 82%) compared to classifiers using other 
imputation approaches. We achieved a superior AUC 
(93%) in this study, which suggests a greater effective-
ness of our approach.

Our contribution
In this study, we have delved into the utilization of 
Ensemble and Imbalance Learning techniques to 
enhance the prediction accuracy for ALS patients 
with short survival expectancy. Our primary aim was 
to classify patients into Short and Non-Short survival 
groups based on data collected at the time of diagno-
sis. The Short survival group comprises individuals 
who die within 24 months from the onset of symp-
toms, indicating a rapid disease progression rate. This 
24-month threshold was chosen based on the typical 
life expectancy of ALS patients, which ranges from 2 
to 5 years. Hence, our goal was to identify patients in 
critical condition during diagnosis. This classification 
is essential for providing timely information to patients 
and their families, improving the quality of end-of-life 
care, and facilitating treatment and resource planning. 
The analyzed dataset showed a significant data imbal-
ance, with 13% representing the minority class (Short) 
and 87% representing the majority class (Non-Short). 
Our focus was centered on the examination of bio-
markers commonly encountered in routine ALS clini-
cal practice.

The proposed solution combined Ensemble and 
Imbalance learning techniques to improve the pre-
diction of critical ALS patients at diagnosis time. Our 
Ensemble-Imbalance approach obtained the best per-
formance, achieving a Balanced Accuracy of 88% and a 
Sensitivity of 96% using a Neural Network model as the 
base classifier. Furthermore, we employed the SHAP 
framework to provide insights into how the best model 
conducted patient classifications.

The principal contributions of our study encompass: 
(i) the development and evaluation of models through 
an Ensemble-Imbalance-based approach, resulting in 
improved performance in identifying critically affected 
ALS patients at the time of diagnosis, (ii) delivering 
both global and local explanations regarding the mod-
el’s prediction mechanisms, including the identification 
of pivotal features and their correlations with the tar-
get variable, and (iii) offering an effective preprocess-
ing methodology for ALS patient data that enabled the 
extraction of relevant ALS characteristics using bio-
markers commonly encountered in clinical practice.

Methods
To ensure the systematic execution of our experiments, 
we organized our models into two distinct scenarios: Sin-
gle-Model and Ensemble-Imbalance. In the initial phase, 
we designed and evaluated models using state-of-the-art 
machine learning algorithms, including k-Nearest Neigh-
bors (k-NN), Decision Tree (DT), Random Forest (RF), 
Support Vector Machines (SVM), Naïve Bayes (NB), 
and Neural Networks (NN). These models constituted 
the Single-Model scenario. Subsequently, we utilized the 
top ten models for each algorithm as base classifiers to 
develop and evaluate the Ensemble-Imbalance-based 
models. Following this, we selected the best-performing 
model for each algorithm and scenario and conducted a 
comparative analysis of their results (see Supplementary 
Information for more details). Finally, we employed the 
SHAP framework to elucidate how the overall best model 
executed patient classifications, offering insights into the 
significance of each feature, in addition to providing both 
global and local interpretability of the model.

The data analyzed in this study can be accessed from 
the PRO-ACT website (https://​ncri1.​partn​ers.​org/​
ProACT). It is important to note that data derived 
from this database cannot be shared due to restric-
tions. However, comprehensive details about the source 
code employed in this study, including data preprocess-
ing, model development, hyperparameter settings, and 
software versions, are available at the public repository 
https://​github.​com/​fabia​nopap​aiz/​ensem​ble_​imbal​ance_​
model_​for_​als_​progn​osis.

Patient data
All data used in this article were sourced from the Pooled 
Resource Open-Access ALS Clinical Trials Database 
(PRO-ACT) [18]. PRO-ACT is the largest open-access 
dataset available for ALS disease. It comprises over 
11,600 records, which contain historical data from 29 
clinical trials on ALS. The dataset provides information 
on clinical, functional, respiratory, laboratory exams, 
death reports, and other biomarkers. The data available 
in the PRO-ACT Database have been volunteered by 
PRO-ACT Consortium members.

For the purposes of our study, we extracted a range of 
pertinent information, including demographic details 
(age, weight, height, and gender), the administration of 
the Riluzole drug, familial medical history, Forced Vital 
Capacity (FVC; expressed as a percentage of normal for a 
healthy individual, adjusted for gender, age, and height), 
Slow Vital Capacity (SVC), Body Mass Index (BMI), El 
Escorial diagnostic criteria, ALS Functional Rate Scale 
(ALSFRS), and Revised ALS Functional Rate Scale 
(ALSFRS-R). The ALSFRS scale comprises ten inquir-
ies focused on assessing various physical functionalities, 

https://ncri1.partners.org/ProACT
https://ncri1.partners.org/ProACT
https://github.com/fabianopapaiz/ensemble_imbalance_model_for_als_prognosis
https://github.com/fabianopapaiz/ensemble_imbalance_model_for_als_prognosis
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such as speech, swallowing, handwriting, turning in 
bed, walking, climbing stairs, and respiratory [19]. The 
ALSFRS-R scale replaced the single respiratory function 
question with three more detailed questions [20].

Design of the experiments
We put forward an ML pipeline divided into the stages 
as shown in Fig.  1, which were detailed hereafter. All 
experiments were performed using the Python program-
ming language and packages for data analysis, machine 
learning, and data visualization, including Pandas, Scikit-
Learn, Imbalance-Learning, Matplotlib, Seaborn, SHAP, 
and NumPy.

Data preprocessing
Patient data collected during diagnosis was analyzed, as 
previously mentioned. To facilitate their analysis, tempo-
ral features were transformed into static data through a 
technique known as Summary Measures. This approach 
offers several advantages, including simplicity of inter-
pretation, compatibility with uneven time intervals 
between measurements, and statistical robustness and 
validity [21]. We utilized values recorded on the date of 
diagnosis for temporal features such as FVC, SVC, and 
BMI. In instances where these values were unavailable, 
we selected the measurement closest to the diagnosis 
date for the respective samples.

As recommended in our previous study [22], we ana-
lyzed the slope of each ALSFRS question separately 
instead of the total slope. This approach enabled us to 
perform a more granular examination of functional loss 
characteristics among patients, aiding in the identifica-
tion of the most pertinent ALSFRS questions for our 

target prediction. Gordon and Lerner [6] presented an 
approach to merge data from both ALSFRS and ALSFRS-
R scales by combining the samples using only informa-
tion about Dyspnea (question 10) for those assessed with 
the ALSFRS-R scale. This enabled them to convert the 
ALSFRS-R scale to ALSFRS, thereby expanding the sam-
ple size. In alignment with this approach, we adopted 
the same strategy in this study, as 51% of the PRO-ACT 
samples were assessed using the ALSFRS-R scale. Conse-
quently, questions 11 and 12 of the ALSFRS-R scale were 
not included in our analysis. To model the ALSFRS ques-
tions as non-temporal variables, we summarized their 
data into single slope values. These slopes were calculated 
as depicted in Eq. (1), where 4 represents the maximum 
question score, Question Score at Diagnosis denotes the 
score assessed at (or closest to) the time of diagnosis, and 
Disease Duration is the time in months between symp-
tom onset and the time of diagnosis.

Additional features were created to store information 
about the age at symptom onset, the BMI, and whether 
the patient deceased within 24 months from symptom 
onset (Survival Group). The age at onset was calculated 
using information about the age at diagnosis and the dis-
ease duration. The BMI was calculated using the patient 
weight and height collected at the diagnosis. The Survival 
Group feature was used to classify patients with respect 
to the target prediction, i.e., into the Short and Non-
Short survival groups. The Short survival group included 
patients who died within 24 months from the onset of 
the symptoms. We excluded patients whose last visit 

(1)Slope =
4 − Question_Score_at_Diagnosis

Disease_Duration

Fig. 1  ML pipeline design to execute the experiments of this study
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was within 24 months of disease onset and who were not 
marked as deceased in the PRO-ACT database.

We performed a complete case analysis, whereby our 
preprocessed dataset comprised solely of samples with 
no missing feature values. Features exhibiting a signifi-
cant percentage of missing values were excluded: SVC 
(87%) and El Escorial (71%). This action was imperative 
to prevent the loss of a substantial number of samples. 
Before being used by the ML models, the features were 
scaled to a range between 0 and 1, and the dataset was 
partitioned into Training and Validation subsets. We 
allocated 80% of the samples for training the models and 
reserved 20% for validation.

Models development
This phase encompassed two key steps: (i) splitting 
the training data using a 5-fold Cross-Validation (CV) 
repeated three times and (ii) executing the models using 
a grid search strategy. We developed models using the 
following ML algorithms: k-NN, NB, DT, RF, SVM, and 
NN. In the Single-Model scenario, the models were 
directly executed using the 5-fold CV strategy in con-
junction with diverse hyperparameter configurations as 
part of the grid search.

In the Ensemble-Imbalance scenario, the models were 
executed using the following classifiers: Balanced Bagging 

(DT, SVM, NN, NB, and k-NN) and Balanced Random 
Forest (RF). These classifiers integrate Ensemble and Res-
ampling techniques to increase the classification perfor-
mance for minority classes without a significant decrease 
for the majority class. Initially, this approach creates mul-
tiple independent subsets of the original training data. 
Then, the number of samples in the different classes is 
equalized for each subset by randomly removing sam-
ples from the majority class using the Random Under-
sampling [11] method. Finally, instances of the same base 
classifier are trained using each of these subsets, and the 
final prediction is computed using a voting or averaging 
mechanism. Figure 2 provides an overview of the Ensem-
ble-Imbalance classifier proposed in this study. The ten 
best classifiers for each algorithm obtained from the 
Single-Model scenario were utilized as base classifiers to 
create the models of the Ensemble-Imbalance scenario.

Selecting and retraining the best models
The top-performing models were chosen based on 
their Balanced Accuracy achieved using the Training 
set in both scenarios. Afterward, the best models were 
retrained (refitted) using the Training set and used to 
make predictions by accessing the Validation set. All 
obtained validation performance metrics were recorded 
and subjected to subsequent analysis and comparison.

Fig. 2  Overview of the Ensemble-Imbalance classifier proposed in this study. First, independent undersampled subsets are generated 
from the Training set using the Random Undersampling method. Then, classifiers created using a specific ML algorithm learn from these subsets 
(each classifier accesses only one subset). Finally, a majority voting strategy is used to classify patients into survival groups
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Table 1  Features analyzed in this study with details on overall distribution and by survival group

Features Values All Samples Short (13%) Non-
Short 
(87%)

Temporal

Diagnostic Delay (Disease Duration) • Average (9 − 18 months)
• Short (≤ 8 months)
• Long (≥ 19 months)

40%
39%
21%

29%
66%
5%

41%
35%
24%

No

Age at Onset (range) • 0 − 39
• 40 − 49
• 50 − 59
• 60 − 69
• 70 + 

13%
22%
31%
26%
8%

4%
16%
35%
31%
14%

15%
22%
31%
25%
7%

Sex • Female
• Male

36%
64%

30%
70%

37%
63%

Site of Onset • Bulbar
• Limb/Spinal

19%
81%

26%
74%

18%
82%

Riluzole • No
• Yes

69%
31%

74%
26%

68%
32%

Forced Vital Capacity (FVC) • Abnormal (< 80%)
• Normal (≥ 80%)

21%
79%

32%
68%

20%
80%

Yes

Body Mass Index (BMI) • Underweight (≤ 18.4)
• Normal (18.5 − 24.9)
• Overweight (25.0 − 29.9)
• Obesity (≥ 30)

3%
37%
37%
23%

3%
40%
38%
19%

3%
37%
37%
23%

Gastrostomy • No
• Yes

96%
4%

97%
3%

96%
4%

Regions Involved Quantity • 1
• 2
• 3
• 4

13%
28%
34%
25%

10%
25%
36%
29%

14%
28%
33%
25%

Bulbar • No
• Yes

35%
65%

29%
71%

36%
64%

Upper Limb 19%
81%

20%
80%

19%
81%

Lower Limb 13%
87%

13%
87%

13%
87%

Respiratory 62%
38%

54%
46%

63%
37%

ALSFRS Slopes by Question Q1 − Speech • Average (0.05 − 0.13/month)
• Rapid (≥ 0.14/month)
• Slow (≤ 0.04/month)

18%
3%
79%

34%
10%
56%

16%
2%
82%

Q2 − Salivation 12%
2%
86%

26%
7%
67%

10%
1%
89%

Q3 − Swallowing 13%
1%
86%

29%
4%
67%

10%
1%
89%

Q4 − Handwriting 18%
3%
79%

30%
12%
58%

16%
1%
83%

Q5 − Cutting 24%
4%
72%

31%
17%
52%

23%
2%
75%
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Models evaluation
In our evaluation and comparative analysis of all ML 
models, we employed the following metrics in this 
order: Balanced Accuracy, Sensitivity, and Specificity. 
Sensitivity and Specificity were utilized as they signify 
the proportion of correctly classified Short and Non-
Short survival patients, respectively. It is worth noting 
that Sensitivity held greater significance than Specific-
ity in our evaluation, given our priority was to correctly 
classify Short survival patients, as they represent the 
critical cases. Balanced Accuracy was selected as the 
appropriate metric for evaluating the experiments as 
it represents the arithmetic average of Sensitivity and 
Specificity. Consequently, a higher Balanced Accuracy 
signifies superior predictive performance concerning 
both groups of patients.

We applied the Bonferroni correction method to 
ascertain whether the performance attained in the 
Ensemble-Imbalance scenario significantly surpassed 
that of the Single-Model scenario for each algorithm. 
It is essential to counteract the multiple comparisons 
problem due to the number of executions using 5-Fold 
CV repeated three times.

Feature importance and model explanation
Following the evaluation and identification of the best 
overall model (specifically, the Ensemble-Imbalance-
based model utilizing NN as the base classifier), we 
conducted an in-depth analysis of how this model clas-
sifies patients using the SHAP framework. We detailed 
the significance of each feature for the classification 
process in the results section, providing comprehensive 

insights into global and local interpretability. To gen-
erate SHAP values and explanations, we employed 
the Kernel-Explainer class. All SHAP graphs were 
produced using the functionalities provided by this 
framework.

Results
Data preprocessing
This study accessed ALS patient data from the PRO-
ACT database. Despite its large number of samples 
(over 11,600), we used only 17% of the available data. 
We opted to perform a complete case analysis, which 
reduced the number of samples that could be included 
due to a high percentage of missing values. The pre-
processed dataset encompassed 1,967 patients, each 
characterized by 23 features. This dataset exhibited an 
Imbalance Ratio of 6.9 concerning the distribution of 
the minority and majority classes, with Short survival 
comprising 13% and Non-Short constituting 87% of the 
cases. Table 1 provides a comprehensive overview of all 
features analyzed in this study, along with their respec-
tive values and distributions.

Performance obtained by algorithm and scenario
Figure 3 visually depicts the top validation performances 
achieved by each algorithm and scenario. The “p” along-
side each algorithm’s name indicates the p-value calcu-
lated after employing the Bonferroni correction method. 
Algorithms that exhibited significantly improved per-
formance in the Ensemble-Imbalance scenario were 
denoted by the ⋆ symbol. We applied the same method 
to compare the performance of algorithms in the 

Table 1  (continued)

Features Values All Samples Short (13%) Non-
Short 
(87%)

Temporal

Q6 − Dressing & Hygiene 30%
5%
65%

42%
21%
37%

28%
3%
69%

Q7 − Turning in Bed 18%
2%
80%

33%
11%
56%

16%
1%
83%

Q8 − Walking 29%
3%
68%

43%
16%
41%

27%
2%
71%

Q9 − Climbing Stairs 37%
11%
52%

36%
35%
29%

38%
8%
54%

Q10 − Respiratory 8%
1%
91%

20%
4%
76%

6%
1%
93%
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Ensemble-Imbalance scenario. The Neural Networks out-
performed significantly (p-value ≤ 0.001) the others (DT, 
RF, SVM, and k-NN).

Feature importance and model explanation
Following the evaluation and selection of the overall best 
model (the Ensemble-Imbalance based model using NN 
as a base classifier), we utilized the SHAP framework to 
obtain insights into how this model conducted patient 
classifications. Figure 4 provides valuable information for 
comprehending the global interpretability of the model. 
The left graph displays the ranking of feature importance 
based on their average impact on the model’s output. The 
right graph illustrates the correlations of feature values 
with the target prediction. SHAP values on the x-axis 

exceeding zero indicate that the feature value drove the 
prediction into the Short survival group, whereas those 
below zero into the Non-Short group. Figure 5 elucidates 
the global interpretability by detailing the impact on 
model prediction according to each feature value. Due to 
space constraints, we present the top ten most relevant 
features.

Figure 6 offers an illustration of how SHAP local inter-
pretability can be leveraged to elucidate the classification 
of any given patient based on their feature values. This 
Figure displays information for two patients (A and B) 
extracted from the Validation set. While Patient A was 
classified into the Non-Short survival group, Patient B 
was placed into the Short group. Subfigures “a” and “b” 
show individualized classifications for both patients. The 

Fig. 3  Comparison of the best performances obtained by each algorithm and scenario. The “p” represents the p value obtained after applying 
the Bonferroni correction method to compare the performance in both scenarios for each algorithm. Algorithms presenting a significantly 
better performance in the Ensemble Imbalance scenario were highlighted using the ⋆ symbol. Neural Networks performed significantly better 
(p-value ≤ 0.001) than the others in the Ensemble-Imbalance scenario (highlighted in bold and blue font)
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classification process was driven differently according to 
their feature values (displayed in gray font within paren-
thesis). Subfigure “c” illustrates the classification pro-
cess by comparing both patients on a feature-by-feature 
basis.

Discussion
This study assessed the application of Ensemble and 
Imbalance Learning to enhance the prediction of short-
survival ALS patients at the time of diagnosis. Our focus 
was on the analysis of patient data commonly encoun-
tered in routine ALS clinical practice, obtained through a 
less complex process. We discuss the results obtained in 
the following subsections.

Predictive performances
In the Ensemble-Imbalance scenario, most of the algo-
rithms (5 out of 6) exhibited significantly improved 

performance when compared with the Single-Model 
scenario (Fig.  3). The proposed Ensemble-Imbalance 
approach notably increased Sensitivity without compro-
mising Balanced Accuracy. This is crucial as it improves 
the classification of critical patients. The only exception 
was Naïve Bayes, where the difference between the sce-
narios was not statistically significant (p-value: 0.346). In 
the Single-Model scenario, k-NN was the most affected 
by the data imbalance problem, achieving a Balanced 
Accuracy of 0.68 and showing a tendency to favor the 
majority class (Non-Short).

The Ensemble-Imbalance-based model using Neu-
ral Networks as a base classifier (EI-NN) outperformed 
the others significantly (Balanced Accuracy: 0.88; Sen-
sitivity: 0.96; Specificity: 0.80; p-value ≤ 0.001). The 
Decision Tree, SVM, and Random Forest models dem-
onstrated similar performances to EI-NN. We assume 
these four models are proper for composing a CDS 

Fig. 4  Ranking of feature importance and their correlations with the target variable (Short/Non-Short) for the best model 
in the Ensemble-Imbalance scenario. The x-axis on the left displays the average impact on the model prediction for each feature (mean absolute 
SHAP value). The x-axis on the right demonstrates the impact on the model prediction (SHAP value) concerning the feature values. Positive 
SHAP values indicate that the feature value led the model prediction toward the Short survival group, while negative SHAP values pushed it 
toward the Non-Short group
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system inference mechanism for classifying critical 
ALS patients based on data collected at diagnosis. Our 
approach yielded promising results, but further vali-
dation with unseen data, preferably real-world patient 
data, is necessary to eliminate bias toward the minor-
ity class (Short). This step is essential for a more robust 
model comparison.

Data preprocessing
The data preprocessing proposed and executed in this 
study proved to be highly efficient, enabling ML algo-
rithms to gain a comprehensive understanding of ALS 
characteristics. Even in the Single-Model scenario, Neu-
ral Networks, Random Forest, and SVM models achieved 
good performance, considering the data imbalance and 
the complexity of ALS. In the context of ALS prognosis, a 
data categorization approach may be more effective than 
direct utilization of the actual feature values. Future stud-
ies could explore alternative definitions of categorical val-
ues to assess their impact on performance.

Our results also highlighted the feasibility of construct-
ing ML solutions using less complex biomarkers. We 
consider it essential to develop feasible CDS systems for 
primary care, eliminating the need for more complex and 
costly biomarkers such as genetics.

ALS disease presents an inherent complexity, and 
future work can extend our approach by employing clus-
tering methods to find groups of patients with correlated 
clinical features and, thus, develop more effective mod-
els based on the clusters identified. We can cite FCAN-
MOPSO [23] and Biclustering [24] as examples of such 
methods.

Features importance and model explanation
A comprehensive analysis of the results revealed valuable 
insights into understanding the global interpretability of 
the model, the importance of the features, and their cor-
relations with target prediction (refer to Figs.  4 and 5). 
Many features displayed substantial correlations with 
the target, underscoring their importance in identifying 
critical patients at the time of diagnosis. Table 2 provides 
details on the type of correlation (positive/negative) for 
the top ten ranked features based on their categorical-
ordinal values. Diagnostic Delay, BMI, and Riluzole 
exhibited the most relevant negative correlations with the 
target. Conversely, Q6-Dressing & Hygiene, Q9-Climbing 
Stairs, Q8-Walking, Q1-Speech, Sex, Age at Onset, and 
FVC showed the most relevant positive correlations.

The Diagnostic Delay was the most relevant among 
the features. We can observe that 66% of patients in the 

Fig. 5  Average impact on model prediction for the top ten most important features detailed according to their values. Positive (red) and negative 
(blue) SHAP values drive the prediction into Short and Non-Short survival groups, respectively
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Short survival group were diagnosed within the first eight 
months of the onset of the disease (Table  1). This is an 
important biomarker, although it is necessary to analyze 
the following features to understand which signs led to 
a faster diagnosis. Following the ranking, questions Q6, 
Q9, and Q8 of the ALSFRS scale appear as the most rel-
evant, thus correlating the degree of lower motor neuron 

degeneration with a worse prognosis. This aligns with 
what was reported by Al-Chalabi et  al. [25]. Other fac-
tors that represented a worse prognosis also conform 
with the literature on ALS, such as male gender, being 
older at diagnosis, and having an abnormal FVC. Previ-
ous studies using ML applied to ALS prognosis have also 
identified these features as survival predictors [6, 15, 16, 

Fig. 6  Examples of using the SHAP Decision plot to explain how the model classified patients into Short and Non-Short survival groups. Subfigures 
“a” and “b” show individualized classifications for each patient, where the process was conducted according to their feature values (displayed in gray 
font within parenthesis). Subfigure “c” shows the classification process comparing feature by feature for both patients. These graphs must be read 
from bottom to top. The slope of the line within each feature area indicates when the feature value drove the prediction toward the Non-Short 
(left sloping) or the Short (right sloping) groups. The longer the line length within the feature area, the more significant the impact of its value 
on the model prediction
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26]. Hence, we conclude that the proposed Ensemble-
Imbalance approach effectively learned from patient data 
to extract crucial ALS disease characteristics.

The most significant characteristics for identifying 
critical ALS patients at the time of diagnosis were: (i) 
shorter diagnostic time (≤ 8 months); (ii) higher decline 
(slope ≥ 0.14) in ALSFRS Q6 (Dressing & Hygiene), Q9 
(Climbing-Stairs), Q8 (Walking), and Q1 (Speech); (iii) 
male gender; (iv) age ≥ 60 years old; (v) abnormal FVC; 
(vi) not treated with Riluzole; and (vii) underweight 
(BMI ≤ 18.4).

Figure  6 illustrates the local interpretability of the 
model based on the SHAP results. Subfigures “a” and 
“b” provide personalized predictions for two patients 
extracted from the Validation set. Patient A was clas-
sified into the Non-Short survival group, whereas 
Patient B was classified into the Short. Please note that 
their feature values influenced the classification pro-
cess (displayed in gray font within parentheses). Our 
approach enables the identification of the most influen-
tial features contributing to disease progression. Con-
sequently, physicians can direct symptomatic treatment 
to enhance the patient’s quality of life. For example, 
Patient B exhibited a significant functional decline in 
Q1-Speech and Q9-Climbing Stairs. This information 
could guide physicians in deciding that speech and 
physical therapies are necessary. Moreover, this infor-
mation may be employed as inclusion or exclusion 
criteria in clinical trials, facilitating the selection of 
patients with predefined characteristics. Subfigure “c” 
details both patients feature-by-feature within the same 
graph, providing a valuable resource for visualizing 
and comparing two or more patients, thereby revealing 
their similarities and differences.

This study has certain limitations. The data ana-
lyzed were extracted from clinical trials rather than a 

population-based registry. Consequently, there is a risk 
that it may not fully represent the entire ALS popula-
tion due to the inclusion and exclusion criteria applied. 
Furthermore, the dataset exclusively comprised ALS 
patients from the United States of America. It is essen-
tial to validate the results using data from other regions 
with different genetic backgrounds (e.g., South America, 
Africa, or Asia). Additionally, information about cogni-
tive impairment at the time of diagnosis was absent in the 
PRO-ACT database, likely due to its use as an exclusion 
criterion in clinical trials. Nonetheless, this biomarker 
has been previously identified as a significant contribu-
tor to a worse prognosis, independent of specific motor 
impairments [27]. Therefore, it potentially holds rel-
evance as a feature for classifying critical patients at the 
time of diagnosis.

Conclusion
This study evaluated the use of Machine Learning to 
predict short survival in ALS patients by analyzing bio-
markers collected at the time of diagnosis. We focused 
on analyzing biomarkers commonly encountered in 
daily ALS clinical practice, thus avoiding the need for 
more complex and costly biomarkers such as genet-
ics or imaging. Our findings demonstrate that the pro-
posed Ensemble-Imbalance approach can significantly 
enhance predictive performance in classifying critical 
patients during diagnosis. Furthermore, we provided 
detailed insights into how the model generates predic-
tions, emphasizing both global and local interpretabil-
ity. In future work, we intend to leverage these findings 
to develop a Clinical Decision Support (CDS) system for 
classifying critical ALS patients using data collected from 
Brazilian patients. This represents a crucial step toward 
confirming the results obtained in this study.

Table 2  Features correlations with the target variable ordered by the type and importance

Correlation Type Feature Ordering of the Categorical Values

Negative Diagnostic Delay Short → Average → Long

Riluzole No → Yes

BMI Underweight → Normal → Over-
weight → Obesity

Positive Q6 − Dressing & Hygiene Slow → Average → Rapid

Q9 − Climbing Stairs

Q8 − Walking

Q1 − Speech

Sex Female → Male

Age at Onset [0 − 39] → [40 − 49] → [50 − 59] → [60 − 69] 
→ [70 +]

FVC Normal → Abnormal
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