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Introduction
Assessing sedation in non-communicative critically 
ill patients is crucial. Excessive sedation can prolong 
mechanical ventilation and increase morbidity and mor-
tality, while insufficient sedation may cause agitation, 
anxiety, and pain [1, 2]. Hence, an evaluating sedation 
tool is crucial for monitoring the sedation levels of criti-
cally ill patients. Sedation tools, such as the Bispectral 
index (BIS) [3], are recommended but not universally 
available. Currently, nurse-protocolized (N-P) targeted 
sedation protocols, employing scales like the Richmond 
Agitation-Sedation Scale (RASS), are commonly used [4–
6]. Unfortunately, they cannot continuously monitor the 
sedation levels to titrate the sedatives.
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Abstract
Objective  To address the challenge of assessing sedation status in critically ill patients in the intensive care unit (ICU), 
we aimed to develop a non-contact automatic classifier of agitation using artificial intelligence and deep learning.

Methods  We collected the video recordings of ICU patients and cut them into 30-second (30-s) and 2-second (2-s) 
segments. All of the segments were annotated with the status of agitation as “Attention” and “Non-attention”. After 
transforming the video segments into movement quantification, we constructed the models of agitation classifiers 
with Threshold, Random Forest, and LSTM and evaluated their performances.

Results  The video recording segmentation yielded 427 30-s and 6405 2-s segments from 61 patients for model 
construction. The LSTM model achieved remarkable accuracy (ACC 0.92, AUC 0.91), outperforming other methods.

Conclusion  Our study proposes an advanced monitoring system combining LSTM and image processing to ensure 
mild patient sedation in ICU care. LSTM proves to be the optimal choice for accurate monitoring. Future efforts should 
prioritize expanding data collection and enhancing system integration for practical application.
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The COVID-19 pandemic has prompted a heightened 
emphasis on wireless sensing technologies to reduce 
human interactions and prioritize non-contact health-
care, particularly for healthcare workers, to mitigate virus 
spread [7]. Utilizing continuous and remote non-contact 
monitoring systems has proven effective in detecting 
various health conditions such as sleep disorders, heart 
failure, arrhythmia, activity levels, and stress [8–11]. 
This approach aligns with infection control measures 
and enables real-time optimization of care through fine-
tuned treatment strategies.

Recent advances in deep learning and AI models have 
gained popularity in clinical applications for disease 
diagnosis and prevention. Fang et al. developed a video-
based non-invasive respiration monitoring system that 
detects infants’ respiratory frequency to alert caregivers 
to potential incidents and mitigate Sudden Infant Death 
Syndrome (SIDS) risks [12]. Another study demonstrated 
the effectiveness of deep learning-based pain classifiers 
using facial expressions for automated pain assessment 
in critically ill patients, achieving promising accuracy in 
both image- and video-based classifiers. Additionally, 

deep learning can be applied to screen for depression, 
observe behaviors, track posture, and monitor epilepsy 
[8, 13].

Our study aimed to design an AI-assisted automatic 
classifier of agitation, which could be applied in a non-
contact, continuous sedation monitoring system. The 
system could aid nurses in assessing and monitoring the 
movement of intensive care unit patients and facilitate 
timely intervention and treatment based on the assess-
ment outcomes. Using artificial intelligence and deep 
learning, we successfully extracted the features of real-
time video and constructed the models to classify the agi-
tation status automatically.

Materials & methods
Setting
This study was conducted in the intensive care units of 
Taichung Veterans General Hospital (TCVGH), a 1530-
bed medical center in central Taiwan. The study was 
approved by the Institutional Review Board and Ethics 
Committee of TCVGH (IRB No. CG21307B). Informed 
consents were obtained, and digital video recordings of 
ICU patients were taken without disrupting standard 
care. Exclusion criteria were applied to patients under 20, 
pregnant individuals, and HIV patients. The patient’s age, 
sex, RASS, and restraint status were recorded too.

Research framework
The study consisted of seven major steps  (1) patient 
video collection in the ICU, (2) video segmentation, (3) 
annotation, (4) patient movement quantification (Medi-
aPipe, Background Subtractor MOG2), (5) Data prepro-
cessing (data replacement, normalization), (6) model 
construction with three methods, (7) evaluation of model 
performance (Fig. 1).

Patient video collection
The digital video recordings were captured with a 4  K 
webcam at 1080p/30fps from the patients in the ICUs 
of Taichung Veterans General Hospital. Each patient, on 
average, had 8 min of recorded video footage.

Video segmentation
A subset of patients with the sedation level RASS ≤ -3 
were excluded because of deep sedation and no move-
ment. Finally, the study included 61 patients. Video 
recordings were cut into 30-second (30-s) intervals 
for continuous observation and categorization. Subse-
quently, each 30-s segment was cut into 2-second (2-s) 
sub-segments for single-action classification. Cases with 
more than 10  s of interference, such as caregiver inter-
ventions or camera shake within 30 s, were excluded. In 
total, 427 30-s segments for continuous observation and 

Fig. 1  Research framework consisted of 7 steps: (1) patient video col-
lection in ICU, (2) video segmentation, (3) annotation, (4) patient move-
ment quantification (MediaPipe, Background Subtractor MOG2), (5) Data 
preprocessing (data replacement, normalization), (6) model construction 
with three methods, (7) evaluation of model performance
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6405 2-s sub-segments for single-action classification 
were obtained. (Fig. 2).

Annotation
Based on clinical experience, movements in different 
body regions pose varying levels of risk. For instance, 
raising the hands was considered high-risk, while lifting 
the feet was perceived as lower risk. This differentiation 

aids the model in learning movement patterns more 
precisely, ensuring a more accurate assessment of the 
patient’s condition.

Three experienced ICU nurses were invited for annota-
tion. Before annotating, they discussed the agitated fea-
tures of postures and movements (head, trunk, and lower 
limbs) (Table 1). They reached the consensus as the fol-
lowing. Ten cases were randomly selected and marked 
by two nurses based on patient activity. A third nurse 
assisted in consensus for cases with different annota-
tions from the first and second nurses. They annotated 
another 20 cases to validate their consensus in classifying 
“attention” and “no attention”. Attention was defined as 
the video recordings showing patients resisting the belt 
restriction or moving limbs or heads out of the bed with 
agitation and safety risks, around equal to RASS 2 to 4. 
The others without the above conditions were labeled as 
“no attention”. They labeled all the 30-s and 2-s segments.

Patient movement quantification
The MediaPipe machine learning framework developed 
by Google Research is highly valuable in the healthcare 
field. It is used to track hand movements and assess 
tremor in Parkinson’s disease, as well as diagnose low 

Table 1  Definitions for Body Regions in Evaluation Criteria
No Project Illustrate
1 Head Using the shoulder joints on both sides as 

a benchmark, observe the areas where the 
head shakes or lifts.

2 Trunk
(Include Upper 
limb)

Based on the shoulder and hip joints on 
both sides, observe the areas where the 
upper limbs are shaking or lifting.

3 Lower limb Using the hip joints on both sides as a 
benchmark, observe the area where the 
lower limbs are shaking or lifting.

4 Physical 
Restraint

The process of using any implement, mate-
rial, or device to immobilize the body in a 
manner that restricts an individual’s freedom 
of movement in their environment or ap-
proaches that individual’s physical freedom

Fig. 2  Data collection from patient enrollment to video recording segmentation
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back pain by tracking joint positions in the body [14, 
15]. Designed specifically for RGB video footage, the 
Pose model annotates 33 key joint positions for precise 
measurement.

This study determined the patient’s recumbent position 
(horizontal or vertical) by analyzing the distance between 
the y-coordinates of the left and right shoulders and 
between the right shoulder and right hip. For patients 
lying horizontally, the next step involved determining 
the head orientation by comparing the x-coordinates 
of the left shoulder node to the hip node. The head was 
above the coordinates of the right shoulder, the trunk was 
between the coordinates of the right shoulder and the 
right hip, and the lower limbs were below the coordinates 
of the right hip (Fig. 3).

The OpenCV Background SubtractorMOG2 algo-
rithm utilizes Gaussian Mixture Models (GMM) for 
background separation in videos [16]. It learns the back-
ground and isolates moving foreground objects by asso-
ciating each image pixel with a Gaussian distribution. 
The distribution weight reflects the duration of a color’s 
presence, helping identify the background. The algorithm 
effectively separates moving foreground objects. The pro-
cess involves motion detection, converting the video into 
a black-and-white image. White areas indicate patient 
movement, and higher feature values represent more 
significant movement. These values are calculated by 
summing and averaging frames within each two-second 
interval (Fig. 4).

Data preprocessing
After converting the video into numerical data, this study 
replaced segments affected by external factors using the 
preceding adjacent numerical values to ensure that the 
model’s learning was not influenced. Additionally, the 
data is normalized to optimize the model parameters for 
this particular case.

Model construction
After preprocessing, the data was provided to the classi-
fication model. Thresholds and random forests were used 
for single-action classification (2-s).

(1)	Threshold:

�The threshold method classified the head, trunk, 
and lower limbs into three movement severity 
levels: no movement (1 point), bed movement 
(2 points), and significant off-bed movement (3 
points). Scores for each body part’s classification 
results were aggregated (3 to 9 points). Thresholds 
for each body part and classification outcomes 
were determined using box plots, ensuring clinical 
requirements were met through confusion matrix 
indicators.

(2)	Random forests:

�The Random Forest (RF) algorithm, a highly effective 
classification method, excels in accuracy for 
big data scenarios [17]. Utilizing ensemble 
learning, RF constructs multiple decision trees 
during training, deriving predictions from 
identified patterns. This study applied RF to 
machine learning with quantized movement 
data, aiming to classify patients every two 
seconds. Key parameters were set as follows: 
n_estimators = 100, max_features = auto, 
criterion = Gini.

(3)	Long Short-Term Memor (LSTM):

�LSTM simulated continuous observations and 
classified patients every 30 s. The LSTM model 
used in this study, featuring 20 hidden units, 2 
stacked layers, an input size of 4, and a time step 
of 15. In this study, model hyperparameters were 

Fig. 3  Patient’s posture determined by Using MediaPipe Pose in Various Cases: Vertical Position. Considering patient privacy, this paper presents only 
body parts outside the head, with the patient’s head represented by a circular symbol
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fine-tuned, including data split ratios, activation 
function methods, and the consideration of 
data normalization. The training process was 
visualized, calculating losses and accuracies on 
the validation set after each epoch and recording 
metrics for both training and validation sets. 
Ultimately, a model with optimal stability and 
performance was chosen. The data was split 
into 80% training and 20% testing. We set the 
parameters for the validation, categorical cross-
entropy loss function, adam optimizer, and 
softmax activation function. The validation data 
was from the 10% of training set.

Evaluation of model performance
In this study, confusion matrices and ROC curves are uti-
lized as evaluation metrics, including accuracy (ACC), 

precision (P), recall (R), F1_Score, and cross-validation 
(kfold = 10) was applied to ensure model stability. The 
relationship between sensitivity and specificity is also 
depicted in the ROC curve, and the area under the ROC 
curve (AUC) value is calculated.

In addition to evaluating model performance, this 
study used line charts to analyze patient movement over 
30 s. The goal was to confirm if the model’s assessments 
and image quantification align with real-world scenar-
ios. Two representative cases have been selected. Cases 
of attention involved significant cross-zone movements, 
posing potential risks, while cases of no attention related 
to bed movements. Through motion analysis, the study 
clearly illustrated these distinctions and provided quanti-
fied results.

Fig. 4  Background subtraction and patient motion quantification by OpenCV Background Subtractor MOG2 algorithm and Gaussian Mixture Models 
(GMM) [16]
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Results
System configuration
All experiments conducted in this paper were completed 
using the system configuration outlined in Table 2.

Patients and video recording
We collected the video recordings of 150 patients. Only 
61 patients with RASS scores ≥ -2 were enrolled for 
analysis. The average age was approximately 60 years old. 
Male patients predominated (M/F 46/15), particularly in 
videos featuring patients with a RASS score 0 (Table 3). 
The video recordings of the 61 patients were cut into 427 
30-s and 6405 2-s segments (Fig. 2).

Model construction
Thresholds definition
Figure 5 presents the threshold definitions by using a 
box plot. The specified cut-off values for different body 
parts were set at 0.8 and 5 for the head, 0.8 and 14 for 
the trunk, and 0.8 and 11 for the lower limbs (Figure 5A). 
Additionally, the aggregate scores for all body parts were 
subjected to a cut-off value of 5 (Figure 5B).

Model construction
In this study, the validation was conducted through 
confusion matrices and ROC curves to compare three 
classification methods. A cross-validation average 
accuracy(k-fold = 10) of RF and LSTM was 0.90. The 
LSTM model achieved the highest accuracy (ACC = 0.92). 
LSTM, using the time series data for classification, 
yielded the highest sensitivity (recall) for patients requir-
ing attention and significantly improved various perfor-
mance evaluation metrics (Table 4).

Additionally, by examining the ROC curve, it was 
found that the AUC performance of the LSTM model 
surpassed other methods (AUC = 0.91) (Fig. 6. This result 
emphasizes the outstanding performance of the LSTM 
model in simulating time series data of patient clinical 
observations.

Patient movement analysis
Patient movement analysis of all case
We classified them into “Attention” and “Non-attention.“. 
We further stratified them into “Non-attention With-
out Restraint Belt,” “Non-attention With Restraint Belt,” 
“Attention Without Restraint Belt,” and “Attention With 
Restraint Belt.”

Referring to Fig.  7, it becomes apparent that the out-
comes of image analysis align with clinical observations. 
There exists a notable contrast in movement between 
patients classified as “Attention” and those as “Non-
attention.” Patients in the “Attention” category exhibit 
significantly more extensive movements, including those 
spanning different body regions. Within the “Attention” 
category, a noteworthy distinction surfaces between 
patients with and without restraint belts, with patients 
under restraint belts displaying reduced movement in the 
trunk area.

Patient movement analysis of the representative cases
Patient 49 was categorized as “Non-attention,” with the 
image module detecting minimal head and limb move-
ment. (Fig.  8a) Patient 58 was classified as “Attention,” 
with motion quantification revealing significant head 
and limb movements, including inter-regional motion 
(Fig.  8b). The analysis results from the image module 
align with the observed patient movements, demonstrat-
ing its accurate detection of displacement in each region. 
Due to privacy considerations, the patient’s head is not 
shown in the video. These movements are correlated 
with the analytical data, and corresponding videos will be 
included in the supplementary material.

Discussion
Ensuring mild patient sedation in ICU care is crucial, 
but current clinical assessment methods encounter 
challenges like low frequency, subjectivity, and evolv-
ing professional standards, emphasizing the need for 
advanced, continuous monitoring methods [18, 19]. 
This study proposes a monitoring system that combines 
LSTM and image processing to address challenges such 
as ICU lighting variations and effective activity detec-
tion even when the patient is covered. The integrated AI 
technology enhances system accuracy, compensating for 

Table 2  System configuration
Environment Python3.6
Processor Intel Core i7 2.80 GHz
Memory 16GB
Operating System Window 11

Table 3  Agitation status of the 61 patients
RASS scale -2 -1 0 1 2 3 4
Total patients 14 6 36 1 4 0 0
Sex
Male 10 5 26 1 4 0 0
Female 4 1 10 0 0 0 0
Age(avg) 63 59 67 40 65 0 0
Restraint 6 5 4 0 4 0 0



Page 7 of 10Dai et al. BMC Medical Informatics and Decision Making           (2024) 24:77 

current monitoring limitations. Results align with expert 
observations.

Previous studies used cameras for agitation and seda-
tion monitoring in the ICU. Chase et al. captured limb 
movements, quantifying sedation, and agitation levels 
using fuzzy logic methods [20]. Becouze et al. used cam-
eras to record facial expressions, measuring agitation lev-
els in critically ill patients [21]. Martinez et al. employed 
multiple cameras to observe patient behavior in the ICU 
for sedation control and accident prevention [22]. How-
ever, those researchers faced detection issues and a lack 
of detailed evaluation metrics.

This study compared three methods, and the results 
indicated that LSTM is the optimal choice. LSTM is 
renowned for its feature module’s selective retention of 
information and discarding unnecessary details, thereby 
having the potential to enhance performance [23]. Litton 
et al.‘s research demonstrated that expert-level diagnostic 
differentiation of various diseases can be achieved using 
electronic health records (EHR) and recurrent neural 
networks (RNN) [24]. LSTM technology aids healthcare 
professionals in diagnosis, prediction, and treatment, 
potentially enhancing efficiency and accuracy in the 
medical field and ultimately improving patient experi-
ences and outcomes.

Table 4  Model performance among the models of Threshold, Random Forest, and LSTM
Method
Classifications

Threshold (2-s) Random Forest (2-s) LSTM (30-s)

ACC:0.80 ACC:0.92 ACC:0.92

P R F1 P R F1 P R F1
Non-attention 1 0.78 0.88 0.95 0.96 0.96 0.96 0.92 0.94
Attention 0.34 0.98 0.50 0.67 0.60 0.63 0.83 0.92 0.87

Fig. 5  The threshold definitions by using a box plot. (A) Illustrates the threshold definitions for different body parts, with box plots encompassing quanti-
fied movement values and corresponding categories of no movement, in-bed movement, and significant out-of-bed movement. The bottom of the box 
plots presents the threshold definitions for various levels of movement. (B) Illustrates the threshold definitions for the aggregate score, with box plots 
comprising the aggregate scores for all body parts and their corresponding classification results (no attention and attention). The bottom of the box plots 
presents the threshold definitions for different categories
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Despite significant progress, there is awareness of 
certain limitations. This study restricts the length and 
number of video segments related to patient safety and 
privacy concerns. These limitations include a relatively 
small number of cases and fewer cases with agitation 
(excluding 89 cases), along with marking only attention 

and no attention. However, practical judgment by clini-
cal personnel confirms that this method holds clinical 
value in enhancing patient safety through continuous 
monitoring. Currently, manual interventions by health-
care professionals rely on manual pruning. Addressing 
these challenges requires improvements in smart device 
integration and workflows. Standardized methods, image 
transmission connections, and enhanced system security 
are crucial for monitoring system implementation and 
ensuring the legality, privacy, and reliability of the results. 
Future efforts can focus on expanding data collection, 
increasing the automation of medical interventions, and 
improving system integration and security to enhance 
practicality.

This study still holds significant value in clinical appli-
cations and provides solutions for future challenges. 
Despite existing challenges and risks, the potential 
benefits in patient care and reducing complications 
make these advancements promising for future clinical 
applications.

Conclusion
Our study proposes an advanced monitoring system 
combining LSTM and image processing to address chal-
lenges in ICU care. It offers continuous and accurate 
monitoring, crucial for ensuring mild patient sedation 
amidst evolving standards and subjective assessments. 
LSTM emerges as the optimal choice, leveraging its 

Fig. 7  Patient movement analysis for All Cases: the x-axis illustrates motion quantified value, the y-axis denotes the time axis (seconds), and distinct 
colored lines represent different body parts

 

Fig. 6  AUROC of Threshold, Random Forest, and LSTM. AUROC is the 
highest in the LSTM model
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information retention capabilities for enhanced perfor-
mance, as seen in other medical applications.

While limitations exist due to patient safety and 
privacy concerns, our system holds clinical value in 
enhancing patient safety through continuous monitor-
ing. Addressing these challenges requires improvements 
in device integration, workflows, and system security. 
Future efforts should focus on expanding data collec-
tion and enhancing system integration and security for 
practicality.
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